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Engineers use TLA+ to prevent serious but 
subtle bugs from reaching production.

BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU, 
MARC BROOKER, AND MICHAEL DEARDEUFF

SINCE 2011,  ENGINEERS at Amazon Web Services 
(AWS) have used formal specification and model 
checking to help solve difficult design problems in 
critical systems. Here, we describe our motivation 
and experience, what has worked well in our problem 
domain, and what has not. When discussing personal 
experience we refer to the authors by their initials. 

At AWS we strive to build services that are simple for 
customers to use. External simplicity is built on a hidden 
substrate of complex distributed systems. Such complex 
internals are required to achieve high availability while 
running on cost-efficient infrastructure and cope 
with relentless business growth. As an example of this 
growth, in 2006, AWS launched S3, its Simple Storage 
Service. In the following six years, S3 grew to store one 
trillion objects.3 Less than a year later it had grown 
to two trillion objects and was regularly handling 1.1 
million requests per second.4 

S3 is just one of many AWS ser-
vices that store and process data our 
customers have entrusted to us. To 
safeguard that data, the core of each 
service relies on fault-tolerant dis-
tributed algorithms for replication, 
consistency, concurrency control, au-
to-scaling, load balancing, and other 
coordination tasks. There are many 
such algorithms in the literature, but 
combining them into a cohesive sys-
tem is a challenge, as the algorithms 
must usually be modified to interact 
properly in a real-world system. In 
addition, we have found it necessary 
to invent algorithms of our own. We 
work hard to avoid unnecessary com-
plexity, but the essential complexity of 
the task remains high. 

Complexity increases the probabil-
ity of human error in design, code, 
and operations. Errors in the core of 
the system could cause loss or corrup-
tion of data, or violate other interface 
contracts on which our customers de-
pend. So, before launching a service, 
we need to reach extremely high con-
fidence that the core of the system is 
correct. We have found the standard 
verification techniques in industry are 
necessary but not sufficient. We rou-
tinely use deep design reviews, code 
reviews, static code analysis, stress 
testing, and fault-injection testing but 
still find that subtle bugs can hide in 
complex concurrent fault-tolerant 
systems. One reason they do is that 
human intuition is poor at estimating 
the true probability of supposedly “ex-
tremely rare” combinations of events 
in systems operating at a scale of mil-
lions of requests per second. 

How Amazon 
Web Services 
Uses Formal 
Methods

 key insights
 ˽ Formal methods find bugs in system 

designs that cannot be found through  
any other technique we know of.

 ˽ Formal methods are surprisingly feasible 
for mainstream software development 
and give  good return on investment.

 ˽ At Amazon, formal methods are routinely 
applied to the design of complex  
real-world software, including public 
cloud services.

http://dx.doi.org/10.1145/2699417
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NASA’s C. Michael Holloway says, 
“To a first approximation, we can say 
that accidents are almost always the 
result of incorrect estimates of the 
likelihood of one or more things.”8 Hu-
man fallibility means some of the more 
subtle, dangerous bugs turn out to be 
errors in design; the code faithfully im-
plements the intended design, but the  
design fails to correctly handle a par-
ticular “rare” scenario. We have found 
that testing the code is inadequate as a 
method for finding subtle errors in de-
sign, as the number of reachable states 
of the code is astronomical. So we look 
for a better approach. 

Precise Designs 
In order to find subtle bugs in a system 
design, it is necessary to have a precise 
description of that design. There are 
at least two major benefits to writing a 
precise design: the author is forced to 
think more clearly, helping eliminate 
“plausible hand waving,” and tools 
can be applied to check for errors in 
the design, even while it is being writ-
ten. In contrast, conventional design 
documents consist of prose, static dia-
grams, and perhaps pseudo-code in 

an ad hoc untestable language. Such 
descriptions are far from precise; they 
are often ambiguous or missing criti-
cal aspects (such as partial failure or 
the granularity of concurrency). At the 
other end of the spectrum, the final 
executable code is unambiguous but 
contains an overwhelming amount of 
detail. We had to be able to capture the 
essence of a design in a few hundred 
lines of precise description. As our 
designs are unavoidably complex, we 
needed a highly expressive language, 
far above the level of code, but with 
precise semantics. That expressiv-
ity must cover real-world concurrency 
and fault tolerance. And, as we wish 
to build services quickly, we wanted a 
language that is simple to learn and 
apply, avoiding esoteric concepts. We 
also very much wanted an existing eco-
system of tools. We were thus looking 
for an off-the-shelf method with high 
return on investment. 

We found what we were looking for 
in TLA+,11 a formal specification lan-
guage based on simple discrete math, 
or basic set theory and predicates, 
with which all engineers are familiar. 
A TLA+ specification describes the set 

of all possible legal behaviors, or ex-
ecution traces, of a system. We found 
it helpful that the same language is 
used to describe both the desired cor-
rectness properties of the system (the 
“what”) and the design of the system 
(the “how”). In TLA+, correctness 
properties and system designs are 
just steps on a ladder of abstraction, 
with correctness properties occupy-
ing higher levels, systems designs and 
algorithms in the middle, and execut-
able code and hardware at the lower 
levels. TLA+ is intended to make it as 
easy as possible to show a system de-
sign correctly implements the desired 
correctness properties, through either 
conventional mathematical reasoning 
or tools like the TLC model checker9 
that take a TLA+ specification and 
exhaustively checks the desired cor-
rectness properties across all possible 
execution traces. The ladder of ab-
straction also helps designers manage 
the complexity of real-world systems; 
designers may choose to describe 
the system at several “middle” levels 
of abstraction, with each lower level 
serving a different purpose (such as to 
understand the consequences of fin-
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cases in their personal time on week-
ends and evenings, without further 
help or training. 

In this article, we have not included 
snippets of specifications because their 
unfamiliar syntax can be off-putting to 
potential new users. We find that po-
tential new users benefit from hearing 
about the value of formal methods in in-
dustry before tackling tutorials and ex-
amples. We refer readers to Lamport et 
al.11 for tutorials, Lamport’s Viewpoint 
on page 38 in this issue, and Lamport13 
for an example of a TLA+ specification 
from industry similar in size and com-
plexity to some of the larger specifica-
tions at Amazon (see the table here). We 
find TLA+ to be effective in our problem 
domain, but there are many other for-
mal specification languages and tools, 
some of which we describe later. 

Side Benefit 
TLA+ has been helping us shift to a bet-
ter way of designing systems. Engineers 
naturally focus on designing the “happy 
case” for a system, or the processing 
path in which no errors occur. This is 
understandable, as the happy case is by 
far the most common case. That code 
path must solve the customer’s prob-
lem, perform well, make efficient use 
of resources, and scale with the busi-
ness—all significant challenges in their 
own right. When the design for the hap-
py case is done, the engineer then tries 
to think of “what could go wrong” based 
on personal experience and that of col-
leagues and reviewers. The engineer 
then adds mitigations for these sce-
narios, prioritized by intuition and per-
haps statistics on the probability of oc-
currence. Almost always, the engineer 
stops well short of handling “extremely 
rare” combinations of events, as there 
are too many such scenarios to imagine. 

In contrast, when using formal 
specification we begin by stating pre-
cisely “what needs to go right.” We first 
specify what the system should do by 
defining correctness properties, which 
come in two varieties: 

Safety. What the system is allowed to 
do. For example, at all times, all com-
mitted data is present and correct, or 
equivalently; at no time can the system 
have lost or corrupted any committed 
data; and 

Liveness. What the system must even-
tually do. For example, whenever the 

er-grain concurrency or more detailed 
behavior of a communication medi-
um). The designer can then verify that 
each level is correct with respect to a 
higher level. The freedom to choose 
and adjust levels of abstraction makes 
TLA+ extremely flexible. 

At first, the syntax and idioms of 
TLA+ are somewhat unfamiliar to 
programmers. Fortunately, TLA+ is 
accompanied by a second language 
called PlusCal that is closer to a C-style 
programming language but much 
more expressive, as it uses TLA+ for 
expressions and values. PlusCal is 
intended to be a direct replacement 
for pseudo-code. Several engineers at 
Amazon have found they are more pro-
ductive using PlusCal than they are us-
ing TLA+. However, in other cases, the 
additional flexibility of plain TLA+ has 
been very useful. For many designs the 
choice is a matter of taste, as PlusCal is 
automatically translated to TLA+ with a 
single key press. PlusCal users do have 
to be familiar with TLA+ in order to 
write rich expressions and because it is 
often helpful to read the TLA+ transla-
tion to understand the precise seman-
tics of a piece of code. Moreover, tools 
(such as the TLC model checker) work 
at the TLA+ level. 

Formal Methods for  
Real-World Systems 
In industry, formal methods have 
a reputation for requiring a huge 
amount of training and effort to verify a 
tiny piece of relatively straightforward 
code, so the return on investment is 
justified only in safety-critical domains 
(such as medical systems and avion-
ics). Our experience with TLA+ shows 
this perception to be wrong. At the 
time of this writing, Amazon engineers 
have used TLA+ on 10 large complex 
real-world systems. In each, TLA+ has 
added significant value, either finding 
subtle bugs we are sure we would not 
have found by other means, or giving 
us enough understanding and confi-
dence to make aggressive performance 
optimizations without sacrificing cor-
rectness. Amazon now has seven teams 
using TLA+, with encouragement from 
senior management and technical 
leadership. Engineers from entry level 
to principal have been able to learn 
TLA+ from scratch and get useful re-
sults in two to three weeks, in some 

A precise, testable 
description 
of a system 
becomes a what-
if tool for designs, 
analogous to how 
spreadsheets are 
a what-if tool for 
financial models. 
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system receives a request, it must even-
tually respond to that request. 

After defining correctness prop-
erties, we then precisely describe an 
abstract version of the design, along 
with an abstract version of its operat-
ing environment. We express “what 
must go right” by explicitly specifying 
all properties of the environment on 
which the system relies. Examples of 
such properties might be “If a commu-
nication channel has not failed, then 
messages will be propagated along 
it,” and “If a process has not restarted, 
then it retains its local state, modulo 
any intentional modifications.” Next, 
with the goal of confirming our design 
correctly handles all dynamic events 
in the environment, we specify the ef-
fects of each of those possible events—
network errors and repairs, disk er-
rors, process crashes and restarts, 
data-center failures and repairs, and 
actions by human operators. We then 
use the model checker to verify that 
the specification of the system in its 
environment implements the chosen 
correctness properties, despite any 
combination or interleaving of events 
in the operating environment. We find 
this rigorous “what needs to go right” 
approach to be significantly less error 
prone than the ad hoc “what might go 
wrong” approach. 

More Side Benefits 
We also find that writing a formal 
specification pays dividends over the 
lifetime of the system. All production 
services at Amazon are under constant 
development, even those released 
years ago; we add new features cus-
tomers have requested, we redesign 
components to handle massive in-
creases in scale, and we improve per-
formance by removing bottlenecks. 
Many of these changes are complex 
and must be made to the running sys-
tem with no downtime. Our first prior-
ity is always to avoid causing bugs in a 
production system, so we often have 
to answer “Is this change safe?” We 
find a major benefit of having a pre-
cise, testable model of the core system 
is that we can quickly verify that even 
deep changes are safe or learn they are 
unsafe without doing harm. In several 
cases, we have prevented subtle but se-
rious bugs from reaching production. 
In other cases we have been able to 

make innovative performance optimi-
zations (such as removing or narrow-
ing locks or weakening constraints on 
message ordering) we would not have 
dared to do without having model-
checked those changes. A precise, test-
able description of a system becomes 
a what-if tool for designs, analogous to 
how spreadsheets are a what-if tool for 
financial models. We find that using 
such a tool to explore the behavior of 
the system can improve the designer’s 
understanding of the system. 

In addition, a precise, testable, well-
commented description of a design is 
an excellent form of documentation, 
which is important, as AWS systems 
have unbounded lifetimes. Over time, 
teams grow as the business grows, so 
we regularly have to bring new people 
up to speed on systems. This educa-
tion must be effective. To avoid creat-
ing subtle bugs, we need all engineers 
to have the same mental model of the 
system and for that shared model to be 
accurate, precise, and complete. Engi-
neers form mental models in various 
ways—talking to each other, reading 
design documents, reading code, and 
implementing bug fixes or small fea-
tures. But talk and design documents 
can be ambiguous or incomplete, and 
the executable code is much too large 
to absorb quickly and might not pre-
cisely reflect the intended design. In 
contrast, a formal specification is pre-
cise, short, and can be explored and ex-
perimented on with tools. 

What Formal Specification 
Is Not Good For 
We are concerned with two major 
classes of problems with large distrib-
uted systems: bugs and operator er-
rors that cause a departure from the 
system’s logical intent; and surpris-
ing “sustained emergent performance 
degradation” of complex systems that 
inevitably contain feedback loops. 
We know how to use formal specifica-
tion to find problems in the first class. 
However, problems in the second class 
can cripple a system even though no 
logic bug is involved. A common ex-
ample is when a momentary slowdown 
in a server (due, perhaps, to Java gar-
bage collection) causes timeouts to be 
breached on clients, causing the cli-
ents to retry requests, thus adding load 
to the server, and further slowdown. In 
such scenarios the system eventually 
makes progress; it is not stuck in a logi-
cal deadlock, livelock, or other cycle. 
But from the customer’s perspective 
it is effectively unavailable due to sus-
tained unacceptable response times. 
TLA+ can be used to specify an upper 
bound on response time, as a real-time 
safety property. However, AWS systems 
are built on infrastructure—disks, op-
erating systems, network—that does 
not support hard real-time scheduling 
or guarantees, so real-time safety prop-
erties would not be realistic. We build 
soft real-time systems in which very 
short periods of slow responses are not 
considered errors. However, prolonged 

Applying TLA+ to some of Amazon’s more complex systems. 

System Components
Line Count  

(Excluding Comments) Benefit

S3

Fault-tolerant, low-level 
network algorithm 

804 PlusCal Found two bugs, then 
others in proposed 
optimizations 

Background redistribution of 
data 

645 PlusCal Found one bug, then 
another in the first 
proposed fix 

DynamoDB Replication and  
group-membership system 

939 TLA+ Found three bugs requir-
ing traces of up to 35 
steps 

EBS Volume management 102 PlusCal Found three bugs 

Internal  
distributed  
lock  
manager

Lock-free data structure 223 PlusCal Improved confidence 
though failed to find a 
liveness bug, as liveness 
not checked 

Fault-tolerant replication-and-
reconfiguration algorithm 

318 TLA+ Found one bug and 
verified an aggressive 
optimization 
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pressed in the language. But so far we 
have always been able to find a way to 
express our intent in a way that is clear, 
direct, and can be model checked. 

After evaluating Alloy and TLA+, 
C.N. tried to persuade colleagues at 
Amazon to adopt TLA+. However, en-
gineers have almost no spare time for 
such things, unless compelled by need. 
Fortunately, a need was about to arise. 

First Big Success at Amazon 
In January 2012, Amazon launched Dy-
namoDB, a scalable high-performance 
“no SQL” data store that replicates 
customer data across multiple data 
centers while promising strong con-
sistency.2 This combination of require-
ments leads to a large, complex system. 

The replication and fault-tolerance 
mechanisms in DynamoDB were creat-
ed by author T.R. To verify correctness 
of the production code, T.R. performed 
extensive fault-injection testing using 
a simulated network layer to control 
message loss, duplication, and reor-
dering. The system was also stress test-
ed for long periods on real hardware 
under many different workloads. We 
know such testing is absolutely neces-
sary but can still fail to uncover subtle 
flaws in design. To verify the design of 
DynamoDB, T.R. wrote detailed infor-
mal proofs of correctness that did in-
deed find several bugs in early versions 
of the design. However, we have also 
learned that conventional informal 
proofs can miss very subtle problems.14 
To achieve the highest level of confi-
dence in the design, T.R. chose TLA+. 

T.R. learned TLA+ and wrote a de-
tailed specification of these compo-
nents in a couple of weeks. To model-
check the specification, we used the 
distributed version of the TLC model 
checker running on a cluster of 10 
cc1.4xlarge EC2 instances, each with 
eight cores plus hyperthreads and 
23GB of RAM. The model checker veri-
fied that a small, complicated part of 
the algorithm worked as expected for 
a sufficiently large instance of the sys-
tem to give high confidence it is cor-
rect. T.R. then checked the broader 
fault-tolerant algorithm. This time the 
model checker found a bug that could 
lead to losing data if a particular se-
quence of failures and recovery steps 
would be interleaved with other pro-
cessing. This was a very subtle bug; the 

severe slowdowns are considered er-
rors. We do not yet know of a feasible 
way to model a real system that would 
enable tools to predict such emergent 
behavior. We use other techniques to 
mitigate these risks. 

First Steps to Formal Methods 
With hindsight, Amazon’s path to for-
mal methods seems straightforward; 
we had an engineering problem and 
found a solution. Reality was some-
what different. The effort began with 
author C.N.’s dissatisfaction with the 
quality of several distributed systems 
he had designed and reviewed, and 
with the development process and 
tools that had been used to construct 
those systems. The systems were con-
sidered successful, yet bugs and opera-
tional problems persisted. To mitigate 
the problems, the systems used well-
proven methods—pervasive contract 
assertions enabled in production—to 
detect symptoms of bugs, and mecha-
nisms (such as “recovery-oriented 
computing”20) to attempt to minimize 
the impact when bugs are triggered. 
However, reactive mechanisms can-
not recover from the class of bugs that 
cause permanent damage to customer 
data; we must instead prevent such 
bugs from being created. 

When looking for techniques to pre-
vent bugs, C.N. did not initially consid-
er formal methods, due to the pervasive 
view that they are suitable for only tiny 
problems and give very low return on in-
vestment. Overcoming the bias against 
formal methods required evidence they 
work on real-world systems. This evi-
dence was provided by Zave,22 who used 
a language called Alloy to find serious 
bugs in the membership protocol of a 
distributed system called Chord. Chord 
was designed by an expert group at MIT 
and is successful, having won a “10-year 
test of time” award at the SIGCOMM 
2011 conference and influenced several 
systems in industry. Zave’s success mo-
tivated C.N. to perform an evaluation of 
Alloy by writing and model checking a 
moderately large Alloy specification of 
a non-trivial concurrent algorithm.18 
We liked many characteristics of the Al-
loy language, including its emphasis on 
“execution traces” of abstract system 
states composed of sets and relations. 
However, we also found that Alloy is not 
expressive enough for many use cases 

at AWS; for instance, we could not find 
a practical way in Alloy to represent 
rich data structures (such as dynamic 
sequences containing nested records 
with multiple fields). 

Alloy’s limited expressivity appears 
to be a consequence of the particular 
approach to analysis taken by the Al-
loy Analyzer tool. The limitations do 
not seem to be caused by Alloy’s con-
ceptual model (“execution traces” over 
system states). This hypothesis moti-
vated C.N. to look for a language with 
a similar conceptual model but with 
richer constructs for describing system 
states. C.N. eventually stumbled on a 
language with those properties when 
he found a TLA+ specification in the 
appendix of a paper on a canonical al-
gorithm in our problem domain—the 
Paxos consensus algorithm.12 

The fact that TLA+ was created by 
the designer of such a widely used 
algorithm gave us some confidence 
that TLA+ would work for real-world 
systems. We became more confident 
when we learned a team of engineers 
at DEC/Compaq had used TLA+ to 
specify and verify some intricate 
cache-coherency protocols for the Al-
pha series of multicore CPUs.5,16 We 
read one of the specifications13 and 
found they were sophisticated distrib-
uted algorithms involving rich mes-
sage passing, fine-grain concurrency, 
and complex correctness properties. 
That left only the question of whether 
TLA+ could handle real-world failure 
modes. (The Alpha cache-coherency 
algorithm does not consider failure.) 
We knew from Lamport’s Fast Paxos 
paper12 that TLA+ could model fault 
tolerance at a high level of abstrac-
tion and were further convinced when 
we found other papers showing TLA+ 
could model lower-level failures.15 

C.N. evaluated TLA+ by writing a 
specification of the same non-trivial 
concurrent algorithm he had written in 
Alloy.18 Both Alloy and TLA+ were able 
to handle the problem, but the com-
parison revealed that TLA+ is much 
more expressive than Alloy. This differ-
ence is important in practice; several 
of the real-world specifications we have 
written in TLA+ would have been infea-
sible in Alloy. We initially had the oppo-
site concern about TLA+; it is so expres-
sive that no model checker can hope 
to evaluate everything that can be ex-
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Formal methods 
have helped us 
devise aggressive 
optimizations to 
complex algorithms 
without sacrificing 
quality. 

shortest error trace exhibiting the bug 
included 35 high-level steps. The im-
probability of such compound events 
is not a defense against such bugs; his-
torically, AWS engineers have observed 
many combinations of events at least 
as complicated as those that could trig-
ger this bug. The bug had passed unno-
ticed through extensive design reviews, 
code reviews, and testing, and T.R. is 
convinced we would not have found it 
by doing more work in those conven-
tional areas. The model checker later 
found two bugs in other algorithms, 
both serious and subtle. T.R. fixed all 
these bugs, and the model checker ver-
ified the resulting algorithms to a very 
high degree of confidence. 

T.R. says that, had he known about 
TLA+ before starting work on Dy-
namoDB he would have used it from 
the start. He believes the investment 
he made in writing and checking the 
formal TLA+ specifications was more 
reliable and less time consuming than 
the work he put into writing and check-
ing his informal proofs. Using TLA+ in 
place of traditional proof writing would 
thus likely have improved time to mar-
ket, in addition to achieving greater 
confidence in the system’s correctness. 

After DynamoDB was launched, T.R. 
worked on a new feature to allow data 
to be migrated between data centers. 
As he already had the specification for 
the existing replication algorithm, T.R. 
was able to quickly incorporate this 
new feature into the specification. The 
model checker found the initial design 
would have introduced a subtle bug, 
but it was easy to fix, and the model 
checker verified the resulting algo-
rithm to the necessary level of confi-
dence. T.R. continues to use TLA+ and 
model checking to verify changes to 
the design for both optimizations and 
new features. 

Persuading More Engineers 
Success with DynamoDB gave us 
enough evidence to present TLA+ to 
the broader engineering community at 
Amazon. This raised a challenge—how 
to convey the purpose and benefits 
of formal methods to an audience of 
software engineers. Engineers think in 
terms of debugging rather than “verifi-
cation,” so we called the presentation 
“Debugging Designs.”18 Continuing 
the metaphor, we have found that soft-

ware engineers more readily grasp the 
concept and practical value of TLA+ if 
we dub it “exhaustively testable pseu-
do-code.” We initially avoid the words 
“formal,” “verification,” and “proof” 
due to the widespread view that for-
mal methods are impractical. We also 
initially avoid mentioning what TLA 
stands for, as doing so would give an 
incorrect impression of complexity. 

Immediately after seeing the pre-
sentation, a team working on S3 asked 
for help using TLA+ to verify a new 
fault-tolerant network algorithm. 
The documentation for the algorithm 
consisted of many large, complicated 
state-machine diagrams. To check 
the state machine, the team had been 
considering writing a Java program 
to brute-force explore possible execu-
tions: essentially a hard-wired form 
of model checking. They were able to 
avoid the effort by using TLA+ instead. 
Author F.Z. wrote two versions of the 
spec over a couple of weeks. For this 
particular problem, F.Z. found that 
she was more productive in PlusCal 
than TLA+, and we have observed that 
engineers often find it easier to begin 
with PlusCal. 

Model checking revealed two sub-
tle bugs in the algorithm and allowed 
F.Z. to verify fixes for both. F.Z. then 
used the spec to experiment with the 
design, adding new features and opti-
mizations. The model checker quickly 
revealed that some of these changes 
would have introduced bugs. 

This success led AWS management 
to advocate TLA+ to other teams work-
ing on S3. Engineers from those teams 
wrote specs for two additional critical 
algorithms and for one new feature. 
F.Z. helped teach them how to write 
their first specs. We find it encouraging 
that TLA+ can be taught by engineers 
who are still new to it themselves; this is 
important for quickly scaling adoption 
in an organization as large as Amazon. 

Author B.M. was one such engineer. 
His first spec was for an algorithm 
known to contain a subtle bug. The bug 
had passed unnoticed through mul-
tiple design reviews and code reviews 
and had surfaced only after months of 
testing. B.M. spent two weeks learning 
TLA+ and writing the spec. Using it, 
the TLC model checker found the bug 
in seconds. The team had already de-
signed and reviewed a fix for the bug, 
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Executive 
management 
actively encourages 
teams to write 
TLA+ specs for new 
features and other 
significant design 
changes. 

the data that were much richer than 
standard multiplicity constraints and 
foreign key constraints. We then added 
high-level specifications of some of 
the main operations on the data that 
helped us correct and refine the sche-
ma. This result suggests a data model 
can be viewed as just another level of 
abstraction of the entire system. It also 
suggests TLA+ may help designers im-
prove a system’s scalability. In order to 
remove scalability bottlenecks, design-
ers often break atomic transactions 
into finer-grain operations chained 
together through asynchronous work-
flows; TLA+ can help explore the conse-
quences of such changes with respect 
to isolation and consistency. 

Most Frequently Asked Question 
On learning about TLA+, engineers 
usually ask, “How do we know that the 
executable code correctly implements 
the verified design?” The answer is 
we do not know. Despite this, formal 
methods still help in multiple ways: 

Get design right. Formal methods 
help engineers get the design right, 
which is a necessary first step toward 
getting the code right. If the design is 
broken, then the code is almost cer-
tainly broken, as mistakes during cod-
ing are extremely unlikely to compen-
sate for mistakes in design. Worse, 
engineers are likely to be deceived into 
believing the code is “correct” because 
it appears to correctly implement the 
(broken) design. Engineers are un-
likely to realize the design is incorrect 
while focused on coding; 

Gain better understanding. Formal 
methods help engineers gain a better 
understanding of the design. Improved 
understanding can only increase the 
chances they will get the code right; 
and 

Write better code. Formal methods 
can help engineers write better “self-
diagnosing code” in the form of asser-
tions. Independent evidence10 and our 
own experience suggest pervasive use 
of assertions is a good way to reduce 
errors in code. An assertion checks a 
small, local part of an overall system 
invariant. A good system invariant 
captures the fundamental reason the 
system works; the system will not do 
anything wrong that could violate a 
safety property as long as it continu-
ously maintains the system invariant. 

so B.M. changed the spec to include 
the proposed fix. The model checker 
found the problem still occurred in a 
different execution trace. A stronger fix 
was proposed, and the model checker 
verified the second fix. B.M. later wrote 
another spec for a different algorithm. 
That spec did not uncover any bugs but 
did uncover several important ambi-
guities in the documentation for the 
algorithm the spec helped resolve. 

Somewhat independently, after see-
ing internal presentations about TLA+, 
authors M.B and M.D. taught them-
selves PlusCal and TLA+ and started 
using them on their respective projects 
without further persuasion or assis-
tance. M.B. used PlusCal to find three 
bugs and wrote a public blog about his 
personal experiments with TLA+ out-
side of Amazon.7 M.D. used PlusCal to 
check a lock-free concurrent algorithm 
and then used TLA+ to find a critical 
bug in one of AWS’s most important 
new distributed algorithms. M.D. also 
developed a fix for the bug and veri-
fied the fix. Independently, C.N. wrote 
a spec for the same algorithm that was 
quite different in style from the spec 
written by M.D., but both found the 
same bug in the algorithm. This sug-
gests the benefits of using TLA+ are 
quite robust to variations among en-
gineers. Both specs were later used to 
verify that a crucial optimization to the 
algorithm did not introduce any bugs. 

Engineers at Amazon continue to 
use TLA+, adopting the practice of first 
writing a conventional prose-design 
document, then incrementally refining 
parts of it into PlusCal or TLA+. This 
method often yields important insight 
about the design, even without going as 
far as full specification or model check-
ing. In one case, C.N. refined a prose 
design of a fault-tolerant replication 
system that had been designed by an-
other Amazon engineer. C.N. wrote 
and model checked specifications 
at two levels of concurrency; these 
specifications helped him understand 
the design well enough to propose 
a major protocol optimization that 
radically reduced write-latency in the 
system. We have also discovered that 
TLA+ is an excellent tool for data mod-
eling, as when designing the schema 
for a relational or “no SQL” database. 
We used TLA+ to design a non-trivial 
schema with semantic invariants over 
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The challenge is to find a good system 
invariant, one strong enough to en-
sure no safety properties are violated. 
Formal methods help engineers find 
strong invariants, so formal methods 
can help improve assertions that help 
improve the quality of code. 

While we would like to verify that 
executable code correctly imple-
ments the high-level specification or 
even generate the code from the spec-
ification, we are not aware of any such 
tools that can handle distributed sys-
tems as large and complex as those 
being built at Amazon. We do rou-
tinely use conventional static analy-
sis tools, but they are largely limited 
to finding “local” issues in the code, 
and are unable to verify compliance 
with a high-level specification. 

We have seen research on using the 
TLC model checker to find “edge cas-
es” in the design on which to test the 
code,21 an approach that seems prom-
ising. However, Tasiran et al.21 covered 
hardware design, and we have not yet 
tried to apply the method to software. 

Alternatives to TLA+ 
There are many formal specifica-
tion methods. We evaluated several 
and published our findings in New-
combe,19 listing the requirements 
we think are important for a formal 
method to be successful in our indus-
try segment. When we found TLA+ met 
those requirements, we stopped evalu-
ating methods, as our goal was always 
practical engineering rather than an 
exhaustive survey. 

Related Work 
We find relatively little published liter-
ature on using high-level formal spec-
ification for verifying the design of 
complex distributed systems in indus-
try. The Farsite project6 is complex but 
somewhat different from the types of 
systems we describe here and appar-
ently never launched commercially. 
Abrial1 cited applications in commer-
cial safety-critical control systems, 
but they seem less complex than our 
problem domain. Lu et al.17 described 
post-facto verification of a well-known 
algorithm for a fault-tolerant distrib-
uted hash table, and Zave22 described 
another such algorithm, but we do not 
know if these algorithms have been 
used in commercial products. 

Conclusion 
Formal methods are a big success at 
AWS, helping us prevent subtle but se-
rious bugs from reaching production, 
bugs we would not have found through 
any other technique. They have helped 
us devise aggressive optimizations to 
complex algorithms without sacrific-
ing quality. At the time of this writing, 
seven Amazon teams have used TLA+, 
all finding value in doing so, and more 
Amazon teams are starting to use it. 
Using TLA+ will improve both time-
to-market and quality of our systems. 
Executive management actively en-
courages teams to write TLA+ specs 
for new features and other significant 
design changes. In annual planning, 
managers now allocate engineering 
time to TLA+. 

While our results are encourag-
ing, some important caveats remain. 
Formal methods deal with models of 
systems, not the systems themselves, 
so the adage “All models are wrong, 
some are useful” applies. The design-
er must ensure the model captures the 
significant aspects of the real system. 
Achieving it is a special skill, the ac-
quisition of which requires thought-
ful practice. Also, we were solely 
concerned with obtaining practical 
benefits in our particular problem do-
main and have not attempted a com-
prehensive survey. Therefore, mileage 
may vary with other tools or in other 
problem domains.  
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