
66 COMMUNICATIONS OF THE ACM | APRIL 2015 | VOL. 58 | NO. 4

contributed articles
DOI:10.1145/2699417

Engineers use TLA+ to prevent serious but
subtle bugs from reaching production.

BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU,
MARC BROOKER, AND MICHAEL DEARDEUFF

SINCE 2011, ENGINEERS at Amazon Web Services
(AWS) have used formal specification and model
checking to help solve difficult design problems in
critical systems. Here, we describe our motivation
and experience, what has worked well in our problem
domain, and what has not. When discussing personal
experience we refer to the authors by their initials.

At AWS we strive to build services that are simple for
customers to use. External simplicity is built on a hidden
substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
running on cost-efficient infrastructure and cope
with relentless business growth. As an example of this
growth, in 2006, AWS launched S3, its Simple Storage
Service. In the following six years, S3 grew to store one
trillion objects.3 Less than a year later it had grown
to two trillion objects and was regularly handling 1.1
million requests per second.4

S3 is just one of many AWS ser-
vices that store and process data our
customers have entrusted to us. To
safeguard that data, the core of each
service relies on fault-tolerant dis-
tributed algorithms for replication,
consistency, concurrency control, au-
to-scaling, load balancing, and other
coordination tasks. There are many
such algorithms in the literature, but
combining them into a cohesive sys-
tem is a challenge, as the algorithms
must usually be modified to interact
properly in a real-world system. In
addition, we have found it necessary
to invent algorithms of our own. We
work hard to avoid unnecessary com-
plexity, but the essential complexity of
the task remains high.

Complexity increases the probabil-
ity of human error in design, code,
and operations. Errors in the core of
the system could cause loss or corrup-
tion of data, or violate other interface
contracts on which our customers de-
pend. So, before launching a service,
we need to reach extremely high con-
fidence that the core of the system is
correct. We have found the standard
verification techniques in industry are
necessary but not sufficient. We rou-
tinely use deep design reviews, code
reviews, static code analysis, stress
testing, and fault-injection testing but
still find that subtle bugs can hide in
complex concurrent fault-tolerant
systems. One reason they do is that
human intuition is poor at estimating
the true probability of supposedly “ex-
tremely rare” combinations of events
in systems operating at a scale of mil-
lions of requests per second.

How Amazon
Web Services
Uses Formal
Methods

 key insights
 ˽ Formal methods find bugs in system

designs that cannot be found through
any other technique we know of.

 ˽ Formal methods are surprisingly feasible
for mainstream software development
and give good return on investment.

 ˽ At Amazon, formal methods are routinely
applied to the design of complex
real-world software, including public
cloud services.

http://dx.doi.org/10.1145/2699417

APRIL 2015 | VOL. 58 | NO. 4 | COMMUNICATIONS OF THE ACM 67

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

NASA’s C. Michael Holloway says,
“To a first approximation, we can say
that accidents are almost always the
result of incorrect estimates of the
likelihood of one or more things.”8 Hu-
man fallibility means some of the more
subtle, dangerous bugs turn out to be
errors in design; the code faithfully im-
plements the intended design, but the
design fails to correctly handle a par-
ticular “rare” scenario. We have found
that testing the code is inadequate as a
method for finding subtle errors in de-
sign, as the number of reachable states
of the code is astronomical. So we look
for a better approach.

Precise Designs
In order to find subtle bugs in a system
design, it is necessary to have a precise
description of that design. There are
at least two major benefits to writing a
precise design: the author is forced to
think more clearly, helping eliminate
“plausible hand waving,” and tools
can be applied to check for errors in
the design, even while it is being writ-
ten. In contrast, conventional design
documents consist of prose, static dia-
grams, and perhaps pseudo-code in

an ad hoc untestable language. Such
descriptions are far from precise; they
are often ambiguous or missing criti-
cal aspects (such as partial failure or
the granularity of concurrency). At the
other end of the spectrum, the final
executable code is unambiguous but
contains an overwhelming amount of
detail. We had to be able to capture the
essence of a design in a few hundred
lines of precise description. As our
designs are unavoidably complex, we
needed a highly expressive language,
far above the level of code, but with
precise semantics. That expressiv-
ity must cover real-world concurrency
and fault tolerance. And, as we wish
to build services quickly, we wanted a
language that is simple to learn and
apply, avoiding esoteric concepts. We
also very much wanted an existing eco-
system of tools. We were thus looking
for an off-the-shelf method with high
return on investment.

We found what we were looking for
in TLA+,11 a formal specification lan-
guage based on simple discrete math,
or basic set theory and predicates,
with which all engineers are familiar.
A TLA+ specification describes the set

of all possible legal behaviors, or ex-
ecution traces, of a system. We found
it helpful that the same language is
used to describe both the desired cor-
rectness properties of the system (the
“what”) and the design of the system
(the “how”). In TLA+, correctness
properties and system designs are
just steps on a ladder of abstraction,
with correctness properties occupy-
ing higher levels, systems designs and
algorithms in the middle, and execut-
able code and hardware at the lower
levels. TLA+ is intended to make it as
easy as possible to show a system de-
sign correctly implements the desired
correctness properties, through either
conventional mathematical reasoning
or tools like the TLC model checker9
that take a TLA+ specification and
exhaustively checks the desired cor-
rectness properties across all possible
execution traces. The ladder of ab-
straction also helps designers manage
the complexity of real-world systems;
designers may choose to describe
the system at several “middle” levels
of abstraction, with each lower level
serving a different purpose (such as to
understand the consequences of fin-

68 COMMUNICATIONS OF THE ACM | APRIL 2015 | VOL. 58 | NO. 4

contributed articles

cases in their personal time on week-
ends and evenings, without further
help or training.

In this article, we have not included
snippets of specifications because their
unfamiliar syntax can be off-putting to
potential new users. We find that po-
tential new users benefit from hearing
about the value of formal methods in in-
dustry before tackling tutorials and ex-
amples. We refer readers to Lamport et
al.11 for tutorials, Lamport’s Viewpoint
on page 38 in this issue, and Lamport13
for an example of a TLA+ specification
from industry similar in size and com-
plexity to some of the larger specifica-
tions at Amazon (see the table here). We
find TLA+ to be effective in our problem
domain, but there are many other for-
mal specification languages and tools,
some of which we describe later.

Side Benefit
TLA+ has been helping us shift to a bet-
ter way of designing systems. Engineers
naturally focus on designing the “happy
case” for a system, or the processing
path in which no errors occur. This is
understandable, as the happy case is by
far the most common case. That code
path must solve the customer’s prob-
lem, perform well, make efficient use
of resources, and scale with the busi-
ness—all significant challenges in their
own right. When the design for the hap-
py case is done, the engineer then tries
to think of “what could go wrong” based
on personal experience and that of col-
leagues and reviewers. The engineer
then adds mitigations for these sce-
narios, prioritized by intuition and per-
haps statistics on the probability of oc-
currence. Almost always, the engineer
stops well short of handling “extremely
rare” combinations of events, as there
are too many such scenarios to imagine.

In contrast, when using formal
specification we begin by stating pre-
cisely “what needs to go right.” We first
specify what the system should do by
defining correctness properties, which
come in two varieties:

Safety. What the system is allowed to
do. For example, at all times, all com-
mitted data is present and correct, or
equivalently; at no time can the system
have lost or corrupted any committed
data; and

Liveness. What the system must even-
tually do. For example, whenever the

er-grain concurrency or more detailed
behavior of a communication medi-
um). The designer can then verify that
each level is correct with respect to a
higher level. The freedom to choose
and adjust levels of abstraction makes
TLA+ extremely flexible.

At first, the syntax and idioms of
TLA+ are somewhat unfamiliar to
programmers. Fortunately, TLA+ is
accompanied by a second language
called PlusCal that is closer to a C-style
programming language but much
more expressive, as it uses TLA+ for
expressions and values. PlusCal is
intended to be a direct replacement
for pseudo-code. Several engineers at
Amazon have found they are more pro-
ductive using PlusCal than they are us-
ing TLA+. However, in other cases, the
additional flexibility of plain TLA+ has
been very useful. For many designs the
choice is a matter of taste, as PlusCal is
automatically translated to TLA+ with a
single key press. PlusCal users do have
to be familiar with TLA+ in order to
write rich expressions and because it is
often helpful to read the TLA+ transla-
tion to understand the precise seman-
tics of a piece of code. Moreover, tools
(such as the TLC model checker) work
at the TLA+ level.

Formal Methods for
Real-World Systems
In industry, formal methods have
a reputation for requiring a huge
amount of training and effort to verify a
tiny piece of relatively straightforward
code, so the return on investment is
justified only in safety-critical domains
(such as medical systems and avion-
ics). Our experience with TLA+ shows
this perception to be wrong. At the
time of this writing, Amazon engineers
have used TLA+ on 10 large complex
real-world systems. In each, TLA+ has
added significant value, either finding
subtle bugs we are sure we would not
have found by other means, or giving
us enough understanding and confi-
dence to make aggressive performance
optimizations without sacrificing cor-
rectness. Amazon now has seven teams
using TLA+, with encouragement from
senior management and technical
leadership. Engineers from entry level
to principal have been able to learn
TLA+ from scratch and get useful re-
sults in two to three weeks, in some

A precise, testable
description
of a system
becomes a what-
if tool for designs,
analogous to how
spreadsheets are
a what-if tool for
financial models.

APRIL 2015 | VOL. 58 | NO. 4 | COMMUNICATIONS OF THE ACM 69

contributed articles

system receives a request, it must even-
tually respond to that request.

After defining correctness prop-
erties, we then precisely describe an
abstract version of the design, along
with an abstract version of its operat-
ing environment. We express “what
must go right” by explicitly specifying
all properties of the environment on
which the system relies. Examples of
such properties might be “If a commu-
nication channel has not failed, then
messages will be propagated along
it,” and “If a process has not restarted,
then it retains its local state, modulo
any intentional modifications.” Next,
with the goal of confirming our design
correctly handles all dynamic events
in the environment, we specify the ef-
fects of each of those possible events—
network errors and repairs, disk er-
rors, process crashes and restarts,
data-center failures and repairs, and
actions by human operators. We then
use the model checker to verify that
the specification of the system in its
environment implements the chosen
correctness properties, despite any
combination or interleaving of events
in the operating environment. We find
this rigorous “what needs to go right”
approach to be significantly less error
prone than the ad hoc “what might go
wrong” approach.

More Side Benefits
We also find that writing a formal
specification pays dividends over the
lifetime of the system. All production
services at Amazon are under constant
development, even those released
years ago; we add new features cus-
tomers have requested, we redesign
components to handle massive in-
creases in scale, and we improve per-
formance by removing bottlenecks.
Many of these changes are complex
and must be made to the running sys-
tem with no downtime. Our first prior-
ity is always to avoid causing bugs in a
production system, so we often have
to answer “Is this change safe?” We
find a major benefit of having a pre-
cise, testable model of the core system
is that we can quickly verify that even
deep changes are safe or learn they are
unsafe without doing harm. In several
cases, we have prevented subtle but se-
rious bugs from reaching production.
In other cases we have been able to

make innovative performance optimi-
zations (such as removing or narrow-
ing locks or weakening constraints on
message ordering) we would not have
dared to do without having model-
checked those changes. A precise, test-
able description of a system becomes
a what-if tool for designs, analogous to
how spreadsheets are a what-if tool for
financial models. We find that using
such a tool to explore the behavior of
the system can improve the designer’s
understanding of the system.

In addition, a precise, testable, well-
commented description of a design is
an excellent form of documentation,
which is important, as AWS systems
have unbounded lifetimes. Over time,
teams grow as the business grows, so
we regularly have to bring new people
up to speed on systems. This educa-
tion must be effective. To avoid creat-
ing subtle bugs, we need all engineers
to have the same mental model of the
system and for that shared model to be
accurate, precise, and complete. Engi-
neers form mental models in various
ways—talking to each other, reading
design documents, reading code, and
implementing bug fixes or small fea-
tures. But talk and design documents
can be ambiguous or incomplete, and
the executable code is much too large
to absorb quickly and might not pre-
cisely reflect the intended design. In
contrast, a formal specification is pre-
cise, short, and can be explored and ex-
perimented on with tools.

What Formal Specification
Is Not Good For
We are concerned with two major
classes of problems with large distrib-
uted systems: bugs and operator er-
rors that cause a departure from the
system’s logical intent; and surpris-
ing “sustained emergent performance
degradation” of complex systems that
inevitably contain feedback loops.
We know how to use formal specifica-
tion to find problems in the first class.
However, problems in the second class
can cripple a system even though no
logic bug is involved. A common ex-
ample is when a momentary slowdown
in a server (due, perhaps, to Java gar-
bage collection) causes timeouts to be
breached on clients, causing the cli-
ents to retry requests, thus adding load
to the server, and further slowdown. In
such scenarios the system eventually
makes progress; it is not stuck in a logi-
cal deadlock, livelock, or other cycle.
But from the customer’s perspective
it is effectively unavailable due to sus-
tained unacceptable response times.
TLA+ can be used to specify an upper
bound on response time, as a real-time
safety property. However, AWS systems
are built on infrastructure—disks, op-
erating systems, network—that does
not support hard real-time scheduling
or guarantees, so real-time safety prop-
erties would not be realistic. We build
soft real-time systems in which very
short periods of slow responses are not
considered errors. However, prolonged

Applying TLA+ to some of Amazon’s more complex systems.

System Components
Line Count

(Excluding Comments) Benefit

S3

Fault-tolerant, low-level
network algorithm

804 PlusCal Found two bugs, then
others in proposed
optimizations

Background redistribution of
data

645 PlusCal Found one bug, then
another in the first
proposed fix

DynamoDB Replication and
group-membership system

939 TLA+ Found three bugs requir-
ing traces of up to 35
steps

EBS Volume management 102 PlusCal Found three bugs

Internal
distributed
lock
manager

Lock-free data structure 223 PlusCal Improved confidence
though failed to find a
liveness bug, as liveness
not checked

Fault-tolerant replication-and-
reconfiguration algorithm

318 TLA+ Found one bug and
verified an aggressive
optimization

70 COMMUNICATIONS OF THE ACM | APRIL 2015 | VOL. 58 | NO. 4

contributed articles

pressed in the language. But so far we
have always been able to find a way to
express our intent in a way that is clear,
direct, and can be model checked.

After evaluating Alloy and TLA+,
C.N. tried to persuade colleagues at
Amazon to adopt TLA+. However, en-
gineers have almost no spare time for
such things, unless compelled by need.
Fortunately, a need was about to arise.

First Big Success at Amazon
In January 2012, Amazon launched Dy-
namoDB, a scalable high-performance
“no SQL” data store that replicates
customer data across multiple data
centers while promising strong con-
sistency.2 This combination of require-
ments leads to a large, complex system.

The replication and fault-tolerance
mechanisms in DynamoDB were creat-
ed by author T.R. To verify correctness
of the production code, T.R. performed
extensive fault-injection testing using
a simulated network layer to control
message loss, duplication, and reor-
dering. The system was also stress test-
ed for long periods on real hardware
under many different workloads. We
know such testing is absolutely neces-
sary but can still fail to uncover subtle
flaws in design. To verify the design of
DynamoDB, T.R. wrote detailed infor-
mal proofs of correctness that did in-
deed find several bugs in early versions
of the design. However, we have also
learned that conventional informal
proofs can miss very subtle problems.14
To achieve the highest level of confi-
dence in the design, T.R. chose TLA+.

T.R. learned TLA+ and wrote a de-
tailed specification of these compo-
nents in a couple of weeks. To model-
check the specification, we used the
distributed version of the TLC model
checker running on a cluster of 10
cc1.4xlarge EC2 instances, each with
eight cores plus hyperthreads and
23GB of RAM. The model checker veri-
fied that a small, complicated part of
the algorithm worked as expected for
a sufficiently large instance of the sys-
tem to give high confidence it is cor-
rect. T.R. then checked the broader
fault-tolerant algorithm. This time the
model checker found a bug that could
lead to losing data if a particular se-
quence of failures and recovery steps
would be interleaved with other pro-
cessing. This was a very subtle bug; the

severe slowdowns are considered er-
rors. We do not yet know of a feasible
way to model a real system that would
enable tools to predict such emergent
behavior. We use other techniques to
mitigate these risks.

First Steps to Formal Methods
With hindsight, Amazon’s path to for-
mal methods seems straightforward;
we had an engineering problem and
found a solution. Reality was some-
what different. The effort began with
author C.N.’s dissatisfaction with the
quality of several distributed systems
he had designed and reviewed, and
with the development process and
tools that had been used to construct
those systems. The systems were con-
sidered successful, yet bugs and opera-
tional problems persisted. To mitigate
the problems, the systems used well-
proven methods—pervasive contract
assertions enabled in production—to
detect symptoms of bugs, and mecha-
nisms (such as “recovery-oriented
computing”20) to attempt to minimize
the impact when bugs are triggered.
However, reactive mechanisms can-
not recover from the class of bugs that
cause permanent damage to customer
data; we must instead prevent such
bugs from being created.

When looking for techniques to pre-
vent bugs, C.N. did not initially consid-
er formal methods, due to the pervasive
view that they are suitable for only tiny
problems and give very low return on in-
vestment. Overcoming the bias against
formal methods required evidence they
work on real-world systems. This evi-
dence was provided by Zave,22 who used
a language called Alloy to find serious
bugs in the membership protocol of a
distributed system called Chord. Chord
was designed by an expert group at MIT
and is successful, having won a “10-year
test of time” award at the SIGCOMM
2011 conference and influenced several
systems in industry. Zave’s success mo-
tivated C.N. to perform an evaluation of
Alloy by writing and model checking a
moderately large Alloy specification of
a non-trivial concurrent algorithm.18
We liked many characteristics of the Al-
loy language, including its emphasis on
“execution traces” of abstract system
states composed of sets and relations.
However, we also found that Alloy is not
expressive enough for many use cases

at AWS; for instance, we could not find
a practical way in Alloy to represent
rich data structures (such as dynamic
sequences containing nested records
with multiple fields).

Alloy’s limited expressivity appears
to be a consequence of the particular
approach to analysis taken by the Al-
loy Analyzer tool. The limitations do
not seem to be caused by Alloy’s con-
ceptual model (“execution traces” over
system states). This hypothesis moti-
vated C.N. to look for a language with
a similar conceptual model but with
richer constructs for describing system
states. C.N. eventually stumbled on a
language with those properties when
he found a TLA+ specification in the
appendix of a paper on a canonical al-
gorithm in our problem domain—the
Paxos consensus algorithm.12

The fact that TLA+ was created by
the designer of such a widely used
algorithm gave us some confidence
that TLA+ would work for real-world
systems. We became more confident
when we learned a team of engineers
at DEC/Compaq had used TLA+ to
specify and verify some intricate
cache-coherency protocols for the Al-
pha series of multicore CPUs.5,16 We
read one of the specifications13 and
found they were sophisticated distrib-
uted algorithms involving rich mes-
sage passing, fine-grain concurrency,
and complex correctness properties.
That left only the question of whether
TLA+ could handle real-world failure
modes. (The Alpha cache-coherency
algorithm does not consider failure.)
We knew from Lamport’s Fast Paxos
paper12 that TLA+ could model fault
tolerance at a high level of abstrac-
tion and were further convinced when
we found other papers showing TLA+
could model lower-level failures.15

C.N. evaluated TLA+ by writing a
specification of the same non-trivial
concurrent algorithm he had written in
Alloy.18 Both Alloy and TLA+ were able
to handle the problem, but the com-
parison revealed that TLA+ is much
more expressive than Alloy. This differ-
ence is important in practice; several
of the real-world specifications we have
written in TLA+ would have been infea-
sible in Alloy. We initially had the oppo-
site concern about TLA+; it is so expres-
sive that no model checker can hope
to evaluate everything that can be ex-

APRIL 2015 | VOL. 58 | NO. 4 | COMMUNICATIONS OF THE ACM 71

contributed articles

Formal methods
have helped us
devise aggressive
optimizations to
complex algorithms
without sacrificing
quality.

shortest error trace exhibiting the bug
included 35 high-level steps. The im-
probability of such compound events
is not a defense against such bugs; his-
torically, AWS engineers have observed
many combinations of events at least
as complicated as those that could trig-
ger this bug. The bug had passed unno-
ticed through extensive design reviews,
code reviews, and testing, and T.R. is
convinced we would not have found it
by doing more work in those conven-
tional areas. The model checker later
found two bugs in other algorithms,
both serious and subtle. T.R. fixed all
these bugs, and the model checker ver-
ified the resulting algorithms to a very
high degree of confidence.

T.R. says that, had he known about
TLA+ before starting work on Dy-
namoDB he would have used it from
the start. He believes the investment
he made in writing and checking the
formal TLA+ specifications was more
reliable and less time consuming than
the work he put into writing and check-
ing his informal proofs. Using TLA+ in
place of traditional proof writing would
thus likely have improved time to mar-
ket, in addition to achieving greater
confidence in the system’s correctness.

After DynamoDB was launched, T.R.
worked on a new feature to allow data
to be migrated between data centers.
As he already had the specification for
the existing replication algorithm, T.R.
was able to quickly incorporate this
new feature into the specification. The
model checker found the initial design
would have introduced a subtle bug,
but it was easy to fix, and the model
checker verified the resulting algo-
rithm to the necessary level of confi-
dence. T.R. continues to use TLA+ and
model checking to verify changes to
the design for both optimizations and
new features.

Persuading More Engineers
Success with DynamoDB gave us
enough evidence to present TLA+ to
the broader engineering community at
Amazon. This raised a challenge—how
to convey the purpose and benefits
of formal methods to an audience of
software engineers. Engineers think in
terms of debugging rather than “verifi-
cation,” so we called the presentation
“Debugging Designs.”18 Continuing
the metaphor, we have found that soft-

ware engineers more readily grasp the
concept and practical value of TLA+ if
we dub it “exhaustively testable pseu-
do-code.” We initially avoid the words
“formal,” “verification,” and “proof”
due to the widespread view that for-
mal methods are impractical. We also
initially avoid mentioning what TLA
stands for, as doing so would give an
incorrect impression of complexity.

Immediately after seeing the pre-
sentation, a team working on S3 asked
for help using TLA+ to verify a new
fault-tolerant network algorithm.
The documentation for the algorithm
consisted of many large, complicated
state-machine diagrams. To check
the state machine, the team had been
considering writing a Java program
to brute-force explore possible execu-
tions: essentially a hard-wired form
of model checking. They were able to
avoid the effort by using TLA+ instead.
Author F.Z. wrote two versions of the
spec over a couple of weeks. For this
particular problem, F.Z. found that
she was more productive in PlusCal
than TLA+, and we have observed that
engineers often find it easier to begin
with PlusCal.

Model checking revealed two sub-
tle bugs in the algorithm and allowed
F.Z. to verify fixes for both. F.Z. then
used the spec to experiment with the
design, adding new features and opti-
mizations. The model checker quickly
revealed that some of these changes
would have introduced bugs.

This success led AWS management
to advocate TLA+ to other teams work-
ing on S3. Engineers from those teams
wrote specs for two additional critical
algorithms and for one new feature.
F.Z. helped teach them how to write
their first specs. We find it encouraging
that TLA+ can be taught by engineers
who are still new to it themselves; this is
important for quickly scaling adoption
in an organization as large as Amazon.

Author B.M. was one such engineer.
His first spec was for an algorithm
known to contain a subtle bug. The bug
had passed unnoticed through mul-
tiple design reviews and code reviews
and had surfaced only after months of
testing. B.M. spent two weeks learning
TLA+ and writing the spec. Using it,
the TLC model checker found the bug
in seconds. The team had already de-
signed and reviewed a fix for the bug,

72 COMMUNICATIONS OF THE ACM | APRIL 2015 | VOL. 58 | NO. 4

contributed articles

Executive
management
actively encourages
teams to write
TLA+ specs for new
features and other
significant design
changes.

the data that were much richer than
standard multiplicity constraints and
foreign key constraints. We then added
high-level specifications of some of
the main operations on the data that
helped us correct and refine the sche-
ma. This result suggests a data model
can be viewed as just another level of
abstraction of the entire system. It also
suggests TLA+ may help designers im-
prove a system’s scalability. In order to
remove scalability bottlenecks, design-
ers often break atomic transactions
into finer-grain operations chained
together through asynchronous work-
flows; TLA+ can help explore the conse-
quences of such changes with respect
to isolation and consistency.

Most Frequently Asked Question
On learning about TLA+, engineers
usually ask, “How do we know that the
executable code correctly implements
the verified design?” The answer is
we do not know. Despite this, formal
methods still help in multiple ways:

Get design right. Formal methods
help engineers get the design right,
which is a necessary first step toward
getting the code right. If the design is
broken, then the code is almost cer-
tainly broken, as mistakes during cod-
ing are extremely unlikely to compen-
sate for mistakes in design. Worse,
engineers are likely to be deceived into
believing the code is “correct” because
it appears to correctly implement the
(broken) design. Engineers are un-
likely to realize the design is incorrect
while focused on coding;

Gain better understanding. Formal
methods help engineers gain a better
understanding of the design. Improved
understanding can only increase the
chances they will get the code right;
and

Write better code. Formal methods
can help engineers write better “self-
diagnosing code” in the form of asser-
tions. Independent evidence10 and our
own experience suggest pervasive use
of assertions is a good way to reduce
errors in code. An assertion checks a
small, local part of an overall system
invariant. A good system invariant
captures the fundamental reason the
system works; the system will not do
anything wrong that could violate a
safety property as long as it continu-
ously maintains the system invariant.

so B.M. changed the spec to include
the proposed fix. The model checker
found the problem still occurred in a
different execution trace. A stronger fix
was proposed, and the model checker
verified the second fix. B.M. later wrote
another spec for a different algorithm.
That spec did not uncover any bugs but
did uncover several important ambi-
guities in the documentation for the
algorithm the spec helped resolve.

Somewhat independently, after see-
ing internal presentations about TLA+,
authors M.B and M.D. taught them-
selves PlusCal and TLA+ and started
using them on their respective projects
without further persuasion or assis-
tance. M.B. used PlusCal to find three
bugs and wrote a public blog about his
personal experiments with TLA+ out-
side of Amazon.7 M.D. used PlusCal to
check a lock-free concurrent algorithm
and then used TLA+ to find a critical
bug in one of AWS’s most important
new distributed algorithms. M.D. also
developed a fix for the bug and veri-
fied the fix. Independently, C.N. wrote
a spec for the same algorithm that was
quite different in style from the spec
written by M.D., but both found the
same bug in the algorithm. This sug-
gests the benefits of using TLA+ are
quite robust to variations among en-
gineers. Both specs were later used to
verify that a crucial optimization to the
algorithm did not introduce any bugs.

Engineers at Amazon continue to
use TLA+, adopting the practice of first
writing a conventional prose-design
document, then incrementally refining
parts of it into PlusCal or TLA+. This
method often yields important insight
about the design, even without going as
far as full specification or model check-
ing. In one case, C.N. refined a prose
design of a fault-tolerant replication
system that had been designed by an-
other Amazon engineer. C.N. wrote
and model checked specifications
at two levels of concurrency; these
specifications helped him understand
the design well enough to propose
a major protocol optimization that
radically reduced write-latency in the
system. We have also discovered that
TLA+ is an excellent tool for data mod-
eling, as when designing the schema
for a relational or “no SQL” database.
We used TLA+ to design a non-trivial
schema with semantic invariants over

APRIL 2015 | VOL. 58 | NO. 4 | COMMUNICATIONS OF THE ACM 73

contributed articles

The challenge is to find a good system
invariant, one strong enough to en-
sure no safety properties are violated.
Formal methods help engineers find
strong invariants, so formal methods
can help improve assertions that help
improve the quality of code.

While we would like to verify that
executable code correctly imple-
ments the high-level specification or
even generate the code from the spec-
ification, we are not aware of any such
tools that can handle distributed sys-
tems as large and complex as those
being built at Amazon. We do rou-
tinely use conventional static analy-
sis tools, but they are largely limited
to finding “local” issues in the code,
and are unable to verify compliance
with a high-level specification.

We have seen research on using the
TLC model checker to find “edge cas-
es” in the design on which to test the
code,21 an approach that seems prom-
ising. However, Tasiran et al.21 covered
hardware design, and we have not yet
tried to apply the method to software.

Alternatives to TLA+
There are many formal specifica-
tion methods. We evaluated several
and published our findings in New-
combe,19 listing the requirements
we think are important for a formal
method to be successful in our indus-
try segment. When we found TLA+ met
those requirements, we stopped evalu-
ating methods, as our goal was always
practical engineering rather than an
exhaustive survey.

Related Work
We find relatively little published liter-
ature on using high-level formal spec-
ification for verifying the design of
complex distributed systems in indus-
try. The Farsite project6 is complex but
somewhat different from the types of
systems we describe here and appar-
ently never launched commercially.
Abrial1 cited applications in commer-
cial safety-critical control systems,
but they seem less complex than our
problem domain. Lu et al.17 described
post-facto verification of a well-known
algorithm for a fault-tolerant distrib-
uted hash table, and Zave22 described
another such algorithm, but we do not
know if these algorithms have been
used in commercial products.

Conclusion
Formal methods are a big success at
AWS, helping us prevent subtle but se-
rious bugs from reaching production,
bugs we would not have found through
any other technique. They have helped
us devise aggressive optimizations to
complex algorithms without sacrific-
ing quality. At the time of this writing,
seven Amazon teams have used TLA+,
all finding value in doing so, and more
Amazon teams are starting to use it.
Using TLA+ will improve both time-
to-market and quality of our systems.
Executive management actively en-
courages teams to write TLA+ specs
for new features and other significant
design changes. In annual planning,
managers now allocate engineering
time to TLA+.

While our results are encourag-
ing, some important caveats remain.
Formal methods deal with models of
systems, not the systems themselves,
so the adage “All models are wrong,
some are useful” applies. The design-
er must ensure the model captures the
significant aspects of the real system.
Achieving it is a special skill, the ac-
quisition of which requires thought-
ful practice. Also, we were solely
concerned with obtaining practical
benefits in our particular problem do-
main and have not attempted a com-
prehensive survey. Therefore, mileage
may vary with other tools or in other
problem domains.

References
1. Abrial, J. Formal methods in industry: Achievements,

problems, future. In Proceedings of the 28th
International Conference on Software Engineering
(Shanghai, China, 2006), 761–768.

2. Amazon.com. Supported Operations in DynamoDB:
Strongly Consistent Reads. System documentation;
http://docs.aws.amazon.com/amazondynamodb/
latest/developerguide/APISummary.html

3. Barr, J. Amazon S3: The first trillion objects. Amazon
Web Services Blog, June 2012; http://aws.typepad.
com/aws/2012/06/amazon-s3-the-first-trillion-
objects.html

4. Barr, J. Amazon S3: Two trillion objects, 1.1 million
requests per second. Amazon Web Services Blog, Mar.
2013; http://aws.typepad.com/aws/2013/04/amazon-
s3-two-trillion-objects-11-million-requests-second.html

5. Batson, B. and Lamport, L. High-level specifications:
Lessons from industry. In Formal Methods for
Components and Objects, Lecture Notes in Computer
Science Number 2852, F.S. de Boer, M. Bonsangue,
S. Graf, and W.-P. de Roever, Eds. Springer, 2003,
242–262.

6. Bolosky, W., Douceur, J., and Howell, J. The Farsite
Project: A retrospective. ACM SIGOPS Operating
Systems Review: Systems Work at Microsoft Research
41, 2 (Apr. 2007), 17–26.

7. Brooker, M. Exploring TLA+ with two-phase commit.
Personal blog, Jan. 2013; http://brooker.co.za/
blog/2013/01/20/two-phase.html

8. Holloway, C. Michael Why you should read accident
reports. Presented at the Software and Complex
Electronic Hardware Standardization Conference

(Norfolk, VA, July 2005); http://klabs.org/richcontent/
conferences/faa_nasa_2005/presentations/cmh-why-
read-accident-reports.pdf

9. Joshi, R., Lamport, L. et al. Checking cache-coherence
protocols with TLA+. Formal Methods in System
Design 22, 2 (Mar, 2003) 125–131.

10. Kudrjavets, G., Nagappan, N., and Ball, T. Assessing
the relationship between software assertions
and code quality: An empirical investigation. In
Proceedings of the 17th International Symposium on
Software Reliability Engineering (Raleigh, NC, Nov.
2006), 204–212.

11. Lamport, L. The TLA Home Page; http://research.
microsoft.com/en-us/um/people/lamport/tla/tla.html

12. Lamport, L. Fast Paxos. Distributed Computing 19, 2
(Oct. 2006), 79–103.

13. Lamport, L. The Wildfire Challenge Problem; http://
research.microsoft.com/en-us/um/people/lamport/
tla/wildfire-challenge.html

14. Lamport, L. Checking a multithreaded algorithm with
+CAL. In Distributed Computing: 20th International
Conference, S. Dolev, Ed. Springer-Verlag, 2006, 11–163.

15. Lamport, L. and Merz, S. Specifying and verifying fault-
tolerant systems. In Formal Techniques in Real-Time
and Fault-Tolerant Systems, Lecture Notes in Computer
Science, Number 863, H. Langmaack, W.-P. de Roever,
and J. Vytopil, Eds. Springer-Verlag, Sept. 1994, 41–76.

16. Lamport, L., Sharma, M., Tuttle, M., and Yu, Y.
The Wildfire Challenge Problem. Jan. 2001;
http://research.microsoft.com/en-us/um/people/
lamport/pubs/wildfire-challenge.pdf

17. Lu, T., Merz, S., and Weidenbach, C. Towards
verification of the Pastry Protocol using TLA+. In
Proceedings of Joint 13th IFIP WG 6.1 International
Conference and 30th IFIP WG 6.1 International
Conference Lecture Notes in Computer Science
Volume 6722 (Reykjavik, Iceland, June 6–9). Springer-
Verlag, 2011, 244 –258.

18. Newcombe, C. Debugging Designs. Presented at the
14th International Workshop on High-Performance
Transaction Systems (Monterey, CA, Oct. 2011); http://
hpts.ws/papers/2011/sessions_2011/Debugging.
pdf and associated specifications http://hpts.ws/
papers/2011/sessions_2011/amazonbundle.tar.gz

19. Newcombe, C. Why Amazon chose TLA+. In
Proceedings of the Fourth International Conference
Lecture Notes in Computer Science Volume 8477, Y.A.
Ameur and K.-D. Schewe, Eds. (Toulouse, France, June
2–6). Springer, 2014, 25–39.

20. Patterson, D., Fox, A. et al. The Berkeley/Stanford
Recovery-Oriented Computing Project. University of
California, Berkeley; http://roc.cs.berkeley.edu/

21. Tasiran, S., Yu, Y., Batson, B., and Kreider, S. Using
formal specifications to monitor and guide simulation:
Verifying the cache coherence engine of the Alpha
21364 microprocessor. In Proceedings of the Third
IEEE International Workshop on Microprocessor Test
and Verification (Austin, TX, June). IEEE Computer
Society, 2002.

22. Zave, P. Using lightweight modeling to understand
Chord. ACM SIGCOMM Computer Communication
Review 42, 2 (Apr. 2012), 49–57.

Chris Newcombe (chris.newcombe@gmail.com) is an
architect at Oracle, Seattle, WA, and was a principal
engineer in the AWS database services group at Amazon.
com, Seattle, WA, when this article was written.

Tim Rath (rath@amazon.com) is a principal engineer in the
AWS database services group at Amazon.com, Seattle, WA.

Fan Zhang (fanxhang58@gmail.com) is a software
engineer and technical product and program manager at
Cyanogen, Seattle, WA, and was a software engineer for
AWS S3 at Amazon.com, Seattle, WA, when this article
was written.

Bogdan Munteanu (bogdanmunte@gmail.com) is
a software engineer at Dropbox, and was a software
engineer in the AWS S3 Engines group at Amazon.com,
Seattle, WA, when this article was written.

Marc Brooker (mbrooker@amazon.com) is a principal
engineer for AWS EC2 at Amazon.com, Seattle, WA.

Michael Deardeuff (mdearde@amazon.com) is a
software engineer in the AWS database services group
at Amazon.com, Seattle, WA.

Copyright held by Owners/Authors.
Publication rights licensed to ACM. $15.00

