

Experimental Software Engineering

Learning Guide – Information for Students

1. Description

Grade	European Master in Software Engineering	
Module	N/A	
Area	Advanced Software Engineering Aspects	
Subject	Experimental Software Engineering	
Туре	Elective	
ECTS credits	6	
Responsible department	Software Engineering	
Major/Section/	N/A	

Academic year	2012/2013
Term	2 nd term
Language	English
Web site	http://www.grise.upm.es/UPM_subjects.php?name=ESE

2. Faculty

NAME and SURNAME	OFFICE	email
Natalia Juristo (Coord.)	D-5104	natalia@fi.upm.es
Sira Vegas	D-5105	sira@fi.upm.es

3. Prior knowledge required to take the subject

Passed subjects	N/A
Other required learning outcomes	N/A

4. Learning goals

SUBJECT-SPECIFIC COMPETENCES AND PROFICIENCY LEVEL		
Code	Competence	Level
CE13	To have a vision of the different specific and emergent aspects of the Software Engineering, and to go further in some of them.	A
CE14	To understand what nowadays software engineering procedures can and cannot reach, their limitations and their possible future evolution.	С

Proficiency level: knowledge (K), comprehension (C), application (A), and analysis and synthesis (S)

SUBJECT LEARNING OUTCOMES			
Code	Learning outcome	Related competences	Profi- ciency level
LR1	Given a particular software engineering field, the student will be able to design and evaluate the most adequate approach to solve some of the related problems, highlighting the technical difficulties and limits of application.	CE13, C14	A

Proficiency level: knowledge (K), comprehension (C), application (A), and analysis and synthesis (S)

5. Subject assessment system

	ACHIEVEMENT INDICATORS		
Ref	Indicator	Related to LR	
11	Understand the limitation of nowadays software engineering technologies due to the lack of a scientific study of them	LR1	
12	Understand what an experimental laboratory and an experiment are for software engineering	LR1	
13	Know the different elements of a software engineering experiments: response variable, factors, levels, etc.	LR1	
14	Design experiments for software engineering technologies: randomization, other control strategies, types of designs, etc.	LR1	
15	Understand the report of software engineering experiments	LR1	
16	Apply basic statistical data analysis techniques (i.e.: t-test, ANOVA, sample size calculation)	LR1	

CONTINUOUS ASSESSMENT			
Brief description of assessable activities	Time	Place	Weight in grade
 Set up an experiment (operationalize and design it) 	5 th Weeks	Classroom & moodle	25%
Run the experiment and collect observations	7 th week	Classroom & moodle	25%
Analyze the data collected	8 th week	Classroom & moodle	25%
 Interpret the results including comparisons with the results of the classroom mates experiment versions 	9 th week	Classroom & moodle	25%
Total: 100%			

GRADING CRITERIA

- Students will be evaluated using the assignments only. No examination will be made.
- The assessment of assignments will depend on (1) presentation made by the students at the classroom and (2) the correctness of the results.
- The final grade will be calculated using a weighted average as described before.

5. Contents and learning activities

SPECIFIC CONTENTS			
Unit / Topic / Chapter	Section	Related indicators	
Chapter 1: Introduction to experimental software engineering	 1.1. Basics of experimentalism 1.2. The scientific method 1.3. Scientific Rules: Cause-effect relationships 1.4. Scientific immaturity of software engineering 	11	
Chapter 2: Laboratory and experiment	 2.1. The concept of laboratory 2.2. The concept of experiment 2.3. A lab for software engineering 2.4. An experiment for software engineering 		
Chapter 3: Elements of an experiment	3.1. Response variables3.2. Factors and levels3.3. Types of empirical studies	13, 15	
Chapter 4: Designing experiments	4.1. Types of variables4.2. Types of control4.3. Validity	14, 15	
Chapter 5: Data analysis	 5.1. Basics of inferential statistics 5.2. Procedures to compare 2 means: t, Mann-Whitney 5.3. Procedures to compare k means: ANOVA 5.4. Statistical power 	16	

6. Brief description of organizational modalities and teaching methods

TEACHING ORGANIZATION			
Scenario	Organizational Modality	Purpose	
	Theory Classes	Talk to students	
	Seminars/Workshops	Construct knowledge through student interaction and activity	
	Practical Classes	Show students what to do	
	Placements	Round out student training in a professional setting	
	Personal Tutoring	Give students personalized attention	
	Group Work	Get students to learn from each other	
	Independent Work	Develop self-learning ability	

TEACHING METHODS		IODS	
	Method	Purpose	
	Explanation/Lecture	Transfer information and activate student cognitive processes	Known as explanation, this teaching method involves the "presentation of a logically structured topic with the aim of providing information organized according to criteria suited for the purpose". This methodology, also known as <i>lecture</i> , mainly focuses on the verbal exposition by the teacher of contents on the subject under study. The term <i>master class</i> is often used to refer to a special type of lecture taught by a professor on special occasions
	Case Studies	Learning by analyzing real or simulated case studies	Intensive and exhaustive analysis of a real fact, problem or event for the purpose of understanding, interpreting or solving the problem, generating hypotheses, comparing data, thinking, learning or diagnosis and, sometimes, training in possible alternative problem-solving procedures.
	Exercises and Problem Solving	Exercise, test and practice prior knowledge	Situations where students are asked to develop the suitable or correct solutions by exercising routines, applying formulae or running algorithms, applying information processing procedures and interpreting the results. It is often used to supplement lectures.
	Problem-Based Learning (PBL)	Develop active learning through problem solving	Teaching and learning method whose starting point is a problem, designed by the teacher, that the student has to solve to develop a number of previously defined competences.
	Project-Oriented Learning (POL)	Complete a problem- solving project applying acquired skills and knowledge	Teaching and learning method where have a set time to develop a project to solve a problem or perform a task by planning, designing and completing a series of activities. The whole thing is based on developing and applying what they have learned and making effective use of resources.
	Cooperative Learning	Develop active and meaningful learning through cooperation	Interactive approach to the organization of classroom work where students are responsible for their own and their peers' learning as part of a co-responsibility strategy for achieving group goals and incentives. This is both one of a number of methods for use and an overall teaching approach, or philosophy.
	Learning Contract	Develop independent learning	An agreement between the teacher and student on the achievement of learning outcomes through an independent work proposal, supervised by the teacher, and to be accomplished within a set period. The essential points of a learning contract are that it is a written agreement, stating required work and reward, requiring personal involvement and having a time frame for accomplishment.

BRIEF DESCRIPTION OF THE ORGANIZATIONAL MODALITIES AND TEACHING METHODS		
THEORY CLASSES	Every chapter/part of the course begins with a 1-2 hours of theory classes	
PROBLEM-SOLVING CLASSES	Exercised are sandwiched in the theory classes. Every chapter/part of the course counts on 1-2 hours of exercised solved by the professor through discussion with the students	
PRACTICAL WORK	Every chapter/part of the course counts with a practical work performed by the students.	
INDIVIDUAL WORK	The practical work is performed partly individually partly in a group	
GROUP WORK	The practical work is performed partly individually partly in a group	
PERSONAL TUTORING	Students can access professors for tutoring constantly by e- mail and moodle.	

7. Teaching resources

TEACHING RESOURCES							
RECOMMENDED	Natalia Juristo, Ana Moreno; Basics of software engineering experimentation. Kluwer 2001.						
READING	Claes Wohlin et al.; Experimentation in software engineering: An introduction. Kluwer 2000.						
	Subject web site http://www.grise.upm.es/UPM_subjects.php?name=ESE						
WEB RESOURCES	Subject Moodle site http://moodle.upm.es/titulaciones/oficiales/course/view.php?id= 1575						
	Laboratory: TBD						
EQUIPMENT	Room: TBD						
	Group work room: TBD						

8. Subject schedule

Week	Classroom activities	Lab activities	Individual work	Group work	Assessment activities	Others
1 (8 hours)	Lecture: Chapter 1 (4 hours)	-	 Individual study (4 hours) 	•	-	-
2 (4 hours)	 Lecture: Chapter 2(1 hour) Problem-solving activity: Chapter 2 (1 hours) 	•	 Individual study (2 hours) 	•	-	-
3 (8 hours)	 Lecture: Chapter 3 (1 hours) Problem-solving activity: Chapter 3 (1 hour) Lecture: Chapter 5 (2 hours) 		 Individual study (4 hours) 	•		
4 (8 hours)	 Lecture: Chapter 4 (2 hours) Problem-solving activity: Chapter 4 (2 hour) 	•	 Individual study (4 hours) 			
5 (20 hours)	Lecture: Chapter 5 (2 hours)	-	Assignment 1: Set up an experiment (9 hours)	 Assignment 1: Set up an experiment (9 hours) 	•	

6 (16 hours)	 Lecture: Chapter 5 (2 hours) 	Brainstorming and group discussion at classroom about the set ups (2 hours)	 Assignment 1: Set up an experiment (6 hours) 	 Assignment 1: Set up an experiment (6 hours) 	•	-
7 (30 hours)	-	• -	Assignment 2: Run the experiment (15 hours)	Assignment 2: Run the experiment (15 hours)	•	-
8 (14 hours)	 Lecture: Chapter 5 (2 hours) Problem-solving activity: Chapter 5 (2 hours) 		 Assignment 3: Analyze collected data (5 hours) 	Assignment 3: Analyze collected data (5 hours)	-	-
9 (14 hours)	-	• -	 Preparation of presentation (5 hours) 	 Preparation of presentation (5 hours) 	 Presentation of assignments 1-3 (4 hours) 	-
10 (14 hours)		Brainstorming and group discussion at classroom about assignment 4 (4 hours)	Assignment 4: Interpreting results (5 hours)	Assignment 4: Interpreting results (5 hours)	•	

11 (14 hours)	Brainstorming and group discussion at classroom about assignment 4 (4 hours)	Assignment 4: Interpreting results (5 hours)	Assignment 4: Interpreting results (5 hours)	•	
12 (12 hours)	•	 Preparation of presentation (4 hours) 	 Preparation of presentation (4 hours) 	 Presentation of assignment 4 (4 hours) 	

Note: Student workload specified for each activity in hours