

Data Engineering

Learning Guide – Information for Students

1. Description

Grade	EUROPEAN MASTER ON SOFTWARE ENGINEERING
Module	Advanced Software Engineering Aspects
Area	
Subject	Data engineering
Туре	Optional
ECTS credits	4
Responsible department	DLSIIS
Major/Section/	Unknown

Academic year	2012/2013	
Term	1st or 3rd term	
Language	English	
Web site	http://pegaso.ls.fi.upm.es/idatos	

2. Faculty

NAME and SURNAME	OFFICE	email
Óscar Marbán Gallego	D-4302	omarban@fi.upm.es
Ernestina Menasalvas Ruiz	D-4303	emenasalvas@fi.upm.e s

3. Prior knowledge required to take the subject

Passed subjects	•
Other required learning outcomes	 Design of relational databases Implementation of relational databases SQL language

4. Learning goals

SUBJECT-SPECIFIC COMPETENCES AND PROFICIENCY LEVEL			
Code	Competence		
SC13	To have a vision of the different specific and emergent aspects of the Software Engineering, and to go further in some of them.	S	
SC14	To understand what nowadays software engineering procedures can and cannot reach, their limitations and their possible future evolution.	S	
roficionau lava	(x) is knowledge (K), comprehension (C), application (A), and analysis and synthesis		

Proficiency level: knowledge (K), comprehension (C), application (A), and analysis and synthesis (S)

SUBJECT LEARNING OUTCOMES			
Code	Learning outcome	Related competences	Profi- ciency level
LR1	Faced with a real problem, choose the most appropriate software engineering solution, analyzing the feasibility of this solution, what can and can not get through the current state of development of the chosen solution, and which is expected advances in the near future.	SC13, SC14	3-4

5. Subject assessment system

	ACHIEVEMENT INDICATORS		
Ref	Indicator	Related to LR	
11	Design of a Data Warehouse	RA1	
12	Knowledge of the architecture of a Data Warehouse	RA1	
13	Implements a Data Warehouse	RA1	
14	Obtains implici knowlegde from data	RA1	
15	Knowlede of Data Mining techniques	RA1	
16	Knowledge of the Data Mining process	RA1	
17	Handle Data Mining techniques	RA1	
18	Handles Data Mining tools	RA1	

CONTINUOUS ASSESSMENT			
Brief description of assessable activities	Time	Place	Weight in grade
Project 1 (4 assignements)	Weeks 1-8	Home	40%
Project 2	Weeks 8 - 16	Home	40%
Exam	Week 16	Class	20%
Total: 100%			tal: 100%

GRADING CRITERIA

The course is composed by two main parts:

- 1. Data Warehouse
- 2. Data Mining

Each part will be evaluated taking into account the evaluation of the final exam and a final Project as follows.

- 1. Part 1. Project 1 composed by 4 assignments that will have to be presented in the classroom. An exam will also take place and the values of it can be seen in the table.
- Part 2. Proyect 2 that will have to be presented in the classroom when assigned. There will be also some assignments and a final exam. The values of each part can be seen in the following table.

Projects will be developed by working groups composed by 4 students enrolled in the course.

In order to pass the course the following requirements are needed:

- 1. to obtain 50/100 points at least
- 2. It is MANDATORY to do the exam and to complete all the assignments and projects
- 3. For each Project it is required to obtain at least a qualification of 30% from its final value (see table)
- 4. For each exam the qualification has to be over the 30% of the maximun value of the exam (see table)

For those who do not pass the course there will be an extra opportunity. To pass this the following requirements are needed:

- 1. There will be no projects and there will be an exam of each part of the course.
- 2. The values of each part are as follows:
 - a. Part 1: 50%
 - b. Part 2: 50%

GRADING CRITERIA

3. Obtain 50/100 points in the global value

6. Contents and learning activities

SPECIFIC CONTENTS			
Unit / Topic / Chapter	Section	Related indicators	
Chapter 1: INTRODUCTION	1.1 Business Intelligence Introduction	12, 16	
	2.1 Data warehouse architecture	12	
	2.2 ETL Tools	I1, I2	
Chapter 2: Data	2.3 Multidimensional model	I1, I3	
warehouse	2.4 Data warehouse design methodologies	I1, I3	
	2.5 Data warehouse tools	I1, I3	
	2.6 OLAP tools	14	
	3.1 KDD process	16	
	3.2 Data mining techniques	17	
Chapter 3: Data Mining	3.3 Data mining tools	18	
Ŭ	3.4 Data mining methodologies	16	
	3.5 CRISP-DM	16	

7. Brief description of organizational modalities and teaching methods

TEACHING ORGANIZATION			
Scenario	Organizational Modality	Purpose	
	Theory Classes	Talk to students	
	Seminars/Workshops	Construct knowledge through student interaction and activity	
	Practical Classes	Show students what to do	
	Placements	Round out student training in a professional setting	
	Personal Tutoring	Give students personalized attention	
	Group Work	Get students to learn from each other	
	Independent Work	Develop self-learning ability	

TEACHING METHODS			
	Method	Purpose	
	Explanation/Lecture	Transfer information and activate student cognitive processes	Known as explanation, this teaching method involves the "presentation of a logically structured topic with the aim of providing information organized according to criteria suited for the purpose". This methodology, also known as <i>lecture</i> , mainly focuses on the verbal exposition by the teacher of contents on the subject under study. The term <i>master class</i> is often used to refer to a special type of lecture taught by a professor on special occasions
	Case Studies	Learning by analyzing real or simulated case studies	Intensive and exhaustive analysis of a real fact, problem or event for the purpose of understanding, interpreting or solving the problem, generating hypotheses, comparing data, thinking, learning or diagnosis and, sometimes, training in possible alternative problem-solving procedures.
	Exercises and Problem Solving	Exercise, test and practice prior knowledge	Situations where students are asked to develop the suitable or correct solutions by exercising routines, applying formulae or running algorithms, applying information processing procedures and interpreting the results. It is often used to supplement lectures.
	Problem-Based Learning (PBL)	Develop active learning through problem solving	Teaching and learning method whose starting point is a problem, designed by the teacher, that the student has to solve to develop a number of previously defined competences.
	Project-Oriented Learning (POL)	Complete a problem- solving project applying acquired skills and knowledge	Teaching and learning method where have a set time to develop a project to solve a problem or perform a task by planning, designing and completing a series of activities. The whole thing is based on developing and applying what they have learned and making effective use of resources.
	Cooperative Learning	Develop active and meaningful learning through cooperation	Interactive approach to the organization of classroom work where students are responsible for their own and their peers' learning as part of a co-responsibility strategy for achieving group goals and incentives. This is both one of a number of methods for use and an overall teaching approach, or philosophy.
	Learning Contract	Develop independent learning	An agreement between the teacher and student on the achievement of learning outcomes through an independent work proposal, supervised by the teacher, and to be accomplished within a set period. The essential points of a learning contract are that it is a written agreement, stating required work and reward, requiring personal involvement and having a time frame for accomplishment.

BRIEF DESCRIPTION OF THE ORGANIZATIONAL MODALITIES AND TEACHING METHODS	
THEORY CLASSES	Theoretical classes will proceed participatively, with certain ones requiring a previous study by the student of some bibliography
PROBLEM-SOLVING CLASSES	Some classes will be dedicated to problem solving and modelling in the classroom to have a discussion on the issues modeled at the end of the classroom.
PRACTICAL WORK	
INDIVIDUAL WORK	Individual works will be announced in classroom for the course.
GROUP WORK	The main learning activity in the course will consist on a team project in teams of 4 students, applying practically the concepts discussed in the classroom to the project.
PERSONAL TUTORING	The classes dedicated to follow-up of team projects will serve a group tutoring, while other assignments will be tutored at the student request.

8. Teaching resources

TEACHING RESOURCES								
RECOMMENDED READING	Building the data warehouse. W. H. immnon. 1996. Willey							
	Managing the Data Warehouse. W. H. Immon. 1997. Willey							
	Building the operational Data Store. W. H. Immon. 1999. Willey							
	Exploration Datawarehouse. W. Immon. 2000. Willey							
	Improving Data Warehouse and Business Information Quality Methods for reducing cost and increasing profits. L. English. 1999 Willey							
	Data Mining Techniques for Marketing, Sales, and Custome support. Michael J. A. Berry and Gordon Linoff. 1997. Willey							
	Data Mining Solutions: Methods for solving Real-World Problems. C. Westphal, T. Blaxton. 1998. Willey							
	Mastering Data mining . The art and science of Customer relationship management. M. Berry, G. Linoff. 2000. Willey							
	The data warehouse lifecycle toolkit. R. Kimball. 2000. Willey							
WEB RESOURCES	Subject web site (http://pegaso.ls.fi.upm.es)							
EQUIPMENT	Room							
	Group work room							

9. Subject schedule

Week	Classroom activities	Lab activities	Individual work	Group work	Assessment activities	Others
Week 1 (6 hours)	 1.1 Business Intelligence introduction (2 hours) 	•	 Independent work (2 hours) 	 Group work (2 hours) 	•	•
Week 2 (7 hours)	 2.1 Data warehouse architecture (2 hours) 	•	 Independent work (2 hours) 	 Group work (3 hours) 	•	•
Week 3 (7 hours)	• 2.2 ETL Tools (1 hours)	•	 Independent work (2 hours) 	Group work (2 hours)	Presentation (1 hours)	•
Week 4 (7 hours)	2.3 Multidimensional model (2 hours)	•	 Independent work (2 hours) 	 Group work (3 hours) 	•	•
Week 4 (7 hours)	2.3 Multidimensional model (2 hours)	•	 Independent work (2 hours) 	 Group work (3 hours) 	•	•
Week 6 (7 hours)	• 2.5 Data warehouse tools (1 hours)	•	 Independent work (2 hours) 	 Group work (2 hours) 	Presentation (1 hora)	•
Week 7 (7 hours)	• 2.6 OLAP Tools (1 hours)	•	 Independent work (2 hours) 	Group work (2 hours)	Presentation (1 hora)	•
Week 8 (7 hours)	 2.4 Data warehouse design methodologies (1 hours) 	•	 Independent work (2 hours) 	Group work (2 hours)	 Presentation (1 hora) 	•

Week 9 (6 hours)	3.1 KDD process (2 hours)	•	Independent work (2 hours)	Group work (2 hours)	•	•
Week 10 (7 hours)	• 3.1 KDD process (2 hours)	•	Independent work (2 hours)	 Group work (3 hours) 	•	•
Week 11 (7 hours)	3.2 Data mining techniques (2 hours)	•	Independent work (2 hours)	 Group work (3 hours) 	•	•
Week 12 (7 hours)	3.2 Data mining techniques (1 hours)	•	Independent work (2 hours)	Group work (2 hours)	Presentation (1 hora)	•
Week 13 (7 hours)	3.3 Data mining tools (1 hours)	•	Independent work (2 hours)	Group work (2 hours)	Presentation (1 hora)	•
Week 14 (7 hours)	3.4 Data mining methodologies (2 hours)	•	Independent work (2 hours)	Group work (3 hours)	•	•
Week 15 (6 hours)	• 3.5 CRISP-DM (2 hours)	•	Independent work (2 hours)	Group work (2 hours)	•	•
Week 16 (7 hours)	• 3.5 CRISP-DM (1 hours)	•	Independent work (2 hours)	Group work (3 hours)	Presentation (1 hora)	•
Week 17 (2 hours)	•	•	•	•	• Final exam (2 hours)	•
	•	•	•	•	•	•

Note: Student workload specified for each activity in hours