



## **Rigorous Software Development** Learning Guide – Information for Students

## 1. Description

| Grade                     | European Master on Software Engineering |  |  |
|---------------------------|-----------------------------------------|--|--|
| Module                    | Advanced SW Eng. Aspects                |  |  |
| Area                      |                                         |  |  |
| Subject                   | Rigorous Software Development           |  |  |
| Туре                      | Elective                                |  |  |
| ECTS credits              | 4                                       |  |  |
| Responsible<br>department | DLSIIS                                  |  |  |
| Major/Section/            |                                         |  |  |

| Academic year | 2012/13                      |
|---------------|------------------------------|
| Term          | 1st                          |
| Language      | English                      |
| Web site      | http://lml.ls.fi.upm.es/rsd/ |





## 2. Faculty

| NAME and SURNAME               | OFFICE | email             |
|--------------------------------|--------|-------------------|
| Julio Mariño Carballo (Coord.) | 2308   | jmarino@fi.upm.es |

## **3. Prior knowledge required to take the subject**

| Passed subjects                     |                                                                      |
|-------------------------------------|----------------------------------------------------------------------|
| Other required<br>learning outcomes | Basic knowledge of formal logic, and functional or logic programming |





## 4. Learning goals

| SUBJECT-SPECIFIC COMPETENCES AND PROFICIENCY LEVEL |                                                                                                                                          |       |  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| Code                                               | Competence                                                                                                                               | Level |  |
| SC13                                               | To have a vision of the different specific and emergent aspects of the Software Engineering, and to go further in some of them.          | S     |  |
| SC14                                               | To understand what nowadays software engineering procedures can and cannot reach, their limitations and their possible future evolution. | S     |  |

Proficiency level: knowledge (K), comprehension (C), application (A), and analysis and synthesis (S)





| SUBJECT LEARNING OUTCOMES |                                                                                                                                                                                                                                                                       |                        |                           |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------|--|
| Code                      | Learning outcome                                                                                                                                                                                                                                                      | Related<br>competences | Profi-<br>ciency<br>level |  |
| LO-ASEA-1                 | Within an application field of Software<br>Engineering, uses and designs the<br>appropriate solution to solve some of its<br>problems, describing the technical<br>difficulties and the application limits                                                            | SC13, SC14             | S                         |  |
| LO-ASEA-2                 | Facing a real problem, chooses an<br>appropriate Software Engineering<br>solution, analyzing its viability, what can<br>and cannot be achieved from the current<br>state of development of the selected<br>solution, and what is expected to advance<br>in the future | SC13, SC14             | A                         |  |
| LO-ASEA-3                 | Explains which are the Software<br>Engineering limits and frontiers, and the<br>base of new tendencies and<br>developments and advanced topics and<br>their possible application                                                                                      | SC13, SC14             | Ρ                         |  |





## 5. Subject assessment system

|     | ACHIEVEMENT INDICATORS                                                |                         |  |  |
|-----|-----------------------------------------------------------------------|-------------------------|--|--|
| Ref | Indicator                                                             | Related to<br>LR        |  |  |
| 11  | Given a problem, to choose among several formal techniques            | LO-ASEA-2               |  |  |
| 12  | To argue the appropriateness of formal techniques for a given problem | LO-ASEA-1,<br>LO-ASEA-3 |  |  |
| 13  | Specifying simple procedures                                          | LO-ASEA-2               |  |  |
| 14  | Proving the correctness of simple code                                | LO-ASEA-2               |  |  |
| 15  | Explaining formal specs in natural language                           | LO-ASEA-2               |  |  |

| CONTINUOUS ASSESSMENT                        |               |                        |                    |  |
|----------------------------------------------|---------------|------------------------|--------------------|--|
| Brief description of assessable activities   | Time          | Place                  | Weight<br>in grade |  |
| Individual exercises<br>(if high attendance) | weekly        | homework               | 100,00%            |  |
|                                              |               |                        |                    |  |
| Individual exercises<br>(if low attendance)  | weekly        | homework               | 60,00%             |  |
| Short presentations<br>(if low attendance)   | Last sessions | Classroom/<br>homework | 40,00%             |  |
|                                              |               | т                      | otal: 100%         |  |





#### **GRADING CRITERIA**

Depending of the number of students, the final grade will be obtained either from:

- a suite of short, individual practical exercises proposed on a weekly basis which will sum up to 60% of the final grade, and then the remaining 40% from short presentations. Exercises belonging to the same unit will be delivered together.
- or just individual practical exercises, if the number of students is too high to allow for the extra sessions needed for the presentations.

Exercises for each unit will have the same relative weight for the overall grade, although individual exercises in a given unit can have different weights.









## 6. Contents and learning activities

| SPECIFIC CONTENTS          |                                                                 |                |  |  |
|----------------------------|-----------------------------------------------------------------|----------------|--|--|
| Unit / Topic /<br>Chapter  |                                                                 |                |  |  |
| Chapter 1:<br>Introduction | 1.1 Overview and challenges for rigorous SW development         | 13, 14, 15     |  |  |
|                            | 1.2 Review of background: formal logic, declarative programming | 12             |  |  |
|                            | 2.1 Introduction to Z                                           | 11, 13, 14, 15 |  |  |
| Chapter 2:                 | 2.2 Introduction to Event-B                                     | 11, 13, 14, 15 |  |  |
| Specification<br>languages | 2.3 Algebraic specifications                                    | 11, 13, 14, 15 |  |  |
|                            | 2.4 Alloy and lightweight methods                               | 11, 13, 14, 15 |  |  |
|                            | 3.1 Herramientas para VDM                                       | 13, 14         |  |  |
| Tema 3:<br>Herramientas.   | 3.2 QuickCheck                                                  | 13, 14         |  |  |
|                            | 3.3 Alloy Analyzer                                              | 13, 14         |  |  |





# 7. Brief description of organizational modalities and teaching methods

| TEACHING ORGANIZATION |                         |                                                                    |  |
|-----------------------|-------------------------|--------------------------------------------------------------------|--|
| Scenario              | Organizational Modality | Purpose                                                            |  |
|                       | Theory Classes          | Talk to students                                                   |  |
|                       | Seminars/Workshops      | Construct knowledge<br>through student<br>interaction and activity |  |
|                       | Practical Classes       | Show students what to do                                           |  |
|                       | Placements              | Round out student<br>training in a professional<br>setting         |  |
|                       | Personal Tutoring       | Give students personalized attention                               |  |
|                       | Group Work              | Get students to learn<br>from each other                           |  |
|                       | Independent Work        | Develop self-learning<br>ability                                   |  |

| TEACHING METHODS |                     |                                         |                                                                                                                                                                                                                                                          |
|------------------|---------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Method              | Purpose                                 |                                                                                                                                                                                                                                                          |
|                  | Explanation/Lecture | activate student<br>cognitive processes | Known as explanation, this teaching method invol-<br>aim of providing information organized according in<br>known as <i>lecture</i> , mainly focuses on the verbal ex<br>study. The term <i>master class</i> is often used to refer<br>special occasions |





|                              | Cas               | e Studies                 | Learning by analyzing<br>real or simulated case<br>studies                          | Intensive and exhaustive analysis of a real fact, pro-<br>interpreting or solving the problem, generating hypo<br>and, sometimes, training in possible alternative prot                                                     | tr  |
|------------------------------|-------------------|---------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                              | -                 | cises and<br>em Solving   | Exercise, test and<br>practice prior knowledge                                      | Situations where students are asked to develop the applying formulae or running algorithms, applying in results. It is often used to supplement lectures.                                                                   |     |
|                              |                   | lem-Based<br>ning (PBL)   | Develop active learning through problem solving                                     | Teaching and learning method whose starting point has to solve to develop a number of previously defir                                                                                                                      |     |
|                              | -                 | ct-Oriented<br>ning (POL) | Complete a problem-<br>solving project applying<br>acquired skills and<br>knowledge | Teaching and learning method where have a set tim<br>task by planning, designing and completing a series<br>applying what they have learned and making effecti                                                              | 6 C |
|                              | Coopera           | itive Learning            | Develop active and<br>meaningful learning<br>through cooperation                    | Interactive approach to the organization of classrood<br>their peers' learning as part of a co-responsibility str<br>This is both one of a number of methods for use and                                                    | a   |
|                              | Learning Contract |                           | Develop independent<br>learning                                                     | An agreement between the teacher and student on t<br>independent work proposal, supervised by the teach<br>essential points of a learning contract are that it is a<br>requiring personal involvement and having a time fra |     |
| BRIEF DESCR<br>TEACHING ME   |                   |                           | GANIZATIONAL MO                                                                     | DALITIES AND                                                                                                                                                                                                                |     |
| THEORY CLASS                 | SES               | Explanation/l             | _ecture and Case Studie                                                             | S                                                                                                                                                                                                                           |     |
| PROBLEM-SOLVING Prot         |                   | Problem-bas               | ed Learning                                                                         |                                                                                                                                                                                                                             |     |
| PRACTICAL WORK No            |                   |                           |                                                                                     |                                                                                                                                                                                                                             |     |
| INDIVIDUAL WORK Problem-base |                   | ed learning               |                                                                                     |                                                                                                                                                                                                                             |     |
| GROUP WORK No                |                   |                           |                                                                                     |                                                                                                                                                                                                                             |     |
| PERSONAL TUT                 | FORING            | On demand                 |                                                                                     |                                                                                                                                                                                                                             |     |





## 8. Teaching resources

| TEACHING RESOURCES     |                                                                                                                                                                                                       |  |  |  |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| RECOMMENDED<br>READING | Seven Myths of Formal Methods. Anthony Hall. IEEE Software, September 1990.                                                                                                                           |  |  |  |  |  |
|                        | Seven More Myths of Formal Methods. Jonathan P. Bowen,<br>Michael G. Hinchey. IEEE Software, July 1995.                                                                                               |  |  |  |  |  |
|                        | Verified Software: theories, tools, experiments. Vision of a Grand<br>Challenge Project. Tony Hoare and Jay Misra, July 2005.                                                                         |  |  |  |  |  |
|                        | First Steps in the Verified Software Grand Challenge. Cliff Jones Peter O'Hearn, Jim Woodcock. IEEE Computer, April 2006.                                                                             |  |  |  |  |  |
|                        | http://wiki.event-b.org/                                                                                                                                                                              |  |  |  |  |  |
|                        | The Essence of Z Ed Currie. Pearson, 1999.                                                                                                                                                            |  |  |  |  |  |
|                        | All About Maude A High Performance Logical Framework.<br>Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N.,<br>Meseguer, J., Talcott, C. Lecture Notes in Computer Science,<br>vol. 4350. |  |  |  |  |  |
|                        | Alloy: A Lightweight Object Modelling Notation. Daniel Jackson.<br>ACM Transactions on Software Engineering and Methodology                                                                           |  |  |  |  |  |
|                        | (TOSEM'02), volume 11, issue 2, pages 256-290.                                                                                                                                                        |  |  |  |  |  |
| WEB RESOURCES          | Subject web site (http://lml.ls.fi.upm.es/rsd)                                                                                                                                                        |  |  |  |  |  |
|                        | Lecture room with blackboard and beamer                                                                                                                                                               |  |  |  |  |  |
|                        | Compilers, tools, etc.                                                                                                                                                                                |  |  |  |  |  |

1





## 9. Subject schedule

| Week                | Classroom activities                         | Lab<br>activities | Individual work                                               | Group work | Assessment<br>activities | Others |
|---------------------|----------------------------------------------|-------------------|---------------------------------------------------------------|------------|--------------------------|--------|
| Week 1<br>(6 hours) | Course introduction (2 h.)                   |                   | <ul><li>Study (2h)</li><li>Individual exercise (2h)</li></ul> |            |                          |        |
| Week 2<br>(7 hours) | Ten Commandments of Formal<br>Methods (2 h.) |                   | <ul><li>Study (3h)</li><li>Individual exercise (2h)</li></ul> |            |                          |        |
| Week 3<br>(7 hours) | The Z notation. (2h)                         |                   | <ul><li>Study (3h)</li><li>Individual exercise (2h)</li></ul> |            |                          |        |
| Week 4<br>(7 hours) | The Z notation. (2h)                         |                   | <ul><li>Study (3h)</li><li>Individual exercise (2h)</li></ul> |            |                          |        |
| Week 5<br>(7 hours) | Explaining exercises (1h).                   |                   | <ul><li>Study (3h)</li><li>Individual exercise (2h)</li></ul> |            | Presentations (1h)       |        |
| Week 6<br>(7 hours) | Event-B (2 h)                                |                   | <ul><li>Study (3h)</li><li>Individual exercise (2h)</li></ul> |            |                          |        |
| Week 7<br>(7 hours) | Event-B (2 h)                                |                   | <ul><li>Study (3h)</li><li>Individual exercise (2h)</li></ul> |            |                          |        |
| Week 8              | Event-B (2 h)                                |                   | • Study (3h)                                                  |            |                          |        |





| Week                 | Classroom activities           | Lab<br>activities | Individual work                                                                                                   | Group work | Assessment<br>activities | Others |
|----------------------|--------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------|------------|--------------------------|--------|
| (7 hours)            |                                |                   | <ul> <li>Individual exercise /<br/>preparing a short<br/>presentation(2h)</li> </ul>                              |            |                          |        |
| Week 9<br>(7 hours)  | Event-B (2 h)                  |                   | <ul> <li>Study (3 h) <i>or</i> preparing a short presentation(3 h)</li> <li>Individual exercise (2 h)</li> </ul>  |            |                          |        |
| Week 10<br>(7 hours) | Explaining exercises (1 h)     |                   | <ul> <li>Study (3 h) <i>or</i> preparing a short presentation (3 h)</li> <li>Individual exercise (2 h)</li> </ul> |            | Presentations (1h)       |        |
| Week 11<br>(7 hours) | Algebraic specifications (2 h) |                   | <ul> <li>Study (3 h) <i>or</i> preparing a short presentation (3 h)</li> <li>Individual exercise (2h)</li> </ul>  |            |                          |        |
| Week 12<br>(7 hours) | Algebraic specifications (2 h) |                   | <ul> <li>Study (3 h) <i>or</i> preparing a short presentation (3 h)</li> <li>Individual exercise (2h)</li> </ul>  |            |                          |        |
| Week 13<br>(7 hours) | Algebraic specifications (2 h) |                   | <ul> <li>Study (3 h) <i>or</i> preparing a short presentation (3 h)</li> <li>Individual exercise (2h)</li> </ul>  |            |                          |        |
| Week 14              | Alloy (2h)                     |                   | • Study (3 h) or preparing a                                                                                      |            |                          |        |





| Week                 | Classroom activities      | Lab<br>activities | Individual work                                                             | Group work | Assessment<br>activities | Others |
|----------------------|---------------------------|-------------------|-----------------------------------------------------------------------------|------------|--------------------------|--------|
| (7 hours)            |                           |                   | short presentation (3 h)                                                    |            |                          |        |
|                      |                           |                   | Individual exercise (2h)                                                    |            |                          |        |
| Week 15<br>(5 hours) | Exercises and recap (1 h) |                   | <ul> <li>Study (3 h) or preparing a<br/>short presentation (3 h)</li> </ul> |            | Presentations (1 h)      |        |
| Week 16<br>(5 hours) |                           |                   | <ul> <li>Study (3 h) or preparing a<br/>short presentation (3 h)</li> </ul> |            | Presentations (2 h)      |        |

Note: Student workload specified for each activity in hours



