
	

	

	

	

	

	

Software Design

Learning	 Guide	 –	 Information	 for	 Students	

1. Description
	

Grade Máster Universitario en Ingeniería de Software/ European
Master on Software Engineering

Module Software Development

Area …

Subject Software Design

Type Compulsory

ECTS credits 4

Responsible
department

Computer Languages and Systems and Software
Engineering

Major/Section/ …

	

Academic year 2012/2013

Term 2nd term

Language English

Web site …

	

	

	

	

	

	

	

2. Faculty
	

NAME and SURNAME OFFICE email

Nelson Medinilla Martínez (Coord.) 5109 nelson@fi.upm.es

	

3. Prior knowledge required to take the subject
	

Passed subjects • …

Other required
learning outcomes • …

 	

	

	

	

	

	

	

	

	

	

	

4. Learning goals
	

	

SUBJECT-SPECIFIC COMPETENCES AND PROFICIENCY LEVEL

Code Competence Level

SC12 To conceive and perform the design of software systems,
assuring relevant quality attributes.

S

Proficiency	 level:	 knowledge	 (K),	 comprehension (C),	 application	 (A),	 and	 analysis	 and	 synthesis	 (S)	

	

	

	

	

	

	

	

SUBJECT LEARNING OUTCOMES

Code Learning outcome Related
competences

Profi-
ciency
level

LR1

The student will be able to design a
software system according to
requirements, restrictions, quality
standards, and developer criteria.

SC12 S

LR2
The student will be able to document each
new design.

SC12 S

LR3 The student will be able to evaluate any
software system design.

SC12 A

	

	

	

	

	

	

5. Subject assessment system
	

ACHIEVEMENT INDICATORS

Ref Indicator
Related to

LR

I1
Design a small software system with client interaction. The
system should work and fulfill the requirements, restrictions,
quality standards and developer criteria.

LR1

I2
Make up a document, effective and efficient, about the
software design.

LR2

I3 Evaluate her/his own design and any other software system
design.

LR3

	

	 	

	

CONTINUOUS ASSESSMENT

Brief description of assessable activities Time Place

Weight
in

grade
Present the design developed up to date 8th week classroom 10%
Present and hand in the final design
together its document.

16th week classroom 90%

Total: 100%
	

	

	

	

	

	

	

	

GRADING CRITERIA

The Software Design subject is practical, based on solving problems, especially, the
development of small software systems. It is taught though seminar/workshop. The
systems are developed in group. Each group works as software developer and client of
another group.

The software system should satisfy their client and the criteria set out in I1 indicator.
The evaluation of this system is the principal measure to grade the student respect to I1
indicator. The replays to oral questions complete the grade.

The I2 indicator on documentation will be graded according to the quality of the written
document.

The I3 indicator on evaluation will be graded by the self-criticism, include in the written
document, and previous evaluations of other designs.

Ninety percent of the grading will be done at the end of the term. This is because
software development is evolutionary. Ten percent of the grading will be done at half
way through the term by a formal presentation of the systems developed up to date.

The software system development is evolutionary for two reasons. The first one is
technical: the systems are development in new or unknown contexts (from the student
point of view). Moreover, this contexts are dynamic; i.e. its change their needs,
frequently. The second reason is the learning process: The systems are modified as
learning goes by. In short, the software development is evolutionary because the
uncertainty presence.

	

	

	

	

	

	

	

	

6. Contents and learning activities
	

SPECIFIC CONTENTS

Unit / Topic /
Chapter Section

Related
indicators

Chapter 1:
Software
Engineering Two-
dimensional
Complexity

1.1 Software Engineering Complexity
Concept Evolution. Software Engineering
needs a Holistic Approach.

I1, I3

1.2 Uncertainty as Tool. I1, I3	

1.3 Relationships between software,
design and process models in the
uncertainty dimension. Evolutionary
Approach.

I1, I3	

Chapter 2:
System Software
Design Features

2.1 Software as Design. Review of
software design concept.

I1, I3	

2.2 Software Design from the system point
of view. Relationships between software
and other kinds of systems. Software
Design based on the System General
Theory. System structures.

I1, I3	

2.3 Divide and Conquer as systems
simplification tool.

I1, I3	

2.4 Ambiguity as powerful systems
simplification tool.

I1, I3	

2.5 Information Hiding Principle. The
Ambiguity or Indifferent (don’t care)
Dependent Relationship.

I1, I3	

2.6 Design Simplification by decrease the
quantity of information using abstractions,
symmetries, monotonic structures, and
others similar techniques.

I1, I3	

2.7 Influence of design structure on design
properties. Allotropy.

I1, I3	

Chapter 3:
Object Oriented

3.1 Contrast between object and
structured models.

I1, I3	

	

	

	

	

	

	

Review 3.2 Ambiguity in: object, message, class
and heritage. Substitution Liskov Principle.

I1, I3	

3.3 Evolutionary Design using Objects. I1, I3	

3.4 Use Cases Technique Review. I1, I3	

Chapter 4:
Design and
Dominion Patterns

4.1 Theoretical foundations of patterns. I1, I3	

4.2 Analysis of Design Patterns. I1, I3	

4.3 Domain Patterns. I1, I3	

Chapter 5:
Design
Documentation

5.1 Documentation reasons. I1, I2, I3

5.2 Software Design Legibility using
objects. Suitable use of abstractions and
their structure.

I1, I2, I3

5.3 Design Diagram Simplification using
abstractions, patterns, symmetries and
monotonic structures.

I1, I2, I3

5.4 Evolutionary Documentation. I1, I2, I3

	

	

	

	

	

	

7. Brief description of organizational modalities and
teaching methods

TEACHING ORGANIZATION

Scenario Organizational Modality Purpose

 Theory Classes Talk to students

 Seminars/Workshops Construct knowledge
through student

interaction and activity

 Practical Classes Show students what to
do

 Placements Round out student
training in a professional

setting

 Personal Tutoring Give students
personalized attention

 Group Work Get students to learn
from each other

 Independent Work Develop self-learning
ability

	

	

	

	

	

	

	

TEACHING METHODS

 Method Purpose

 Explanation/Lecture Transfer information
and activate student
cognitive processes

Known as explanation, this teaching method involves the “presentation of a logically structured topic with
the aim of providing information organized according to criteria suited for the purpose”. This methodology,
also known as lecture, mainly focuses on the verbal exposition by the teacher of contents on the subject
under study. The term master class is often used to refer to a special type of lecture taught by a professor
on special occasions

 Case Studies Learning by analyzing
real or simulated case

studies

Intensive and exhaustive analysis of a real fact, problem or event for the purpose of understanding,
interpreting or solving the problem, generating hypotheses, comparing data, thinking, learning or diagnosis
and, sometimes, training in possible alternative problem-solving procedures.

 Exercises and
Problem Solving

Exercise, test and
practice prior

knowledge

Situations where students are asked to develop the suitable or correct solutions by exercising routines,
applying formulae or running algorithms, applying information processing procedures and interpreting the
results. It is often used to supplement lectures.

 Problem-Based
Learning (PBL)

Develop active
learning through
problem solving

Teaching and learning method whose starting point is a problem, designed by the teacher, that the student
has to solve to develop a number of previously defined competences.

 Project-Oriented
Learning (POL)

Complete a problem-
solving project

applying acquired
skills and knowledge

Teaching and learning method where have a set time to develop a project to solve a problem or perform a
task by planning, designing and completing a series of activities. The whole thing is based on developing
and applying what they have learned and making effective use of resources.

 Cooperative
Learning

Develop active and
meaningful learning
through cooperation

Interactive approach to the organization of classroom work where students are responsible for their own
and their peers’ learning as part of a co-responsibility strategy for achieving group goals and incentives.

This is both one of a number of methods for use and an overall teaching approach, or philosophy.

 Learning Contract

Develop independent
learning

An agreement between the teacher and student on the achievement of learning outcomes through an
independent work proposal, supervised by the teacher, and to be accomplished within a set period. The
essential points of a learning contract are that it is a written agreement, stating required work and reward,
requiring personal involvement and having a time frame for accomplishment.

	

	

	

	

	

	

	
11	

BRIEF DESCRIPTION OF THE ORGANIZATIONAL MODALITIES AND
TEACHING METHODS

THEORY CLASSES Theoretical models used in the subject are analyzed.

PROBLEM-SOLVING
CLASSES

…

PRACTICAL WORK …

INDIVIDUAL WORK Individual works come from group work.

GROUP WORK
Group work is the subject principal work way because
software engineer works in groups and because group work is
the main way of learning in this subject.

PERSONAL
TUTORING

Personal Tutoring could be wanted in order to improve the
learning process.

	

	

	

	

	

	

	
12	

8. Teaching resources
	

TEACHING	 RESOURCES	

RECOMMENDED
READING

Gamma Erich et al. “Design Patterns” Ed. Addison Wesley 1994

Larman Craig “Applying UML and Patterns” Second Edition.
Prentice Hall 2002.

Parnas David “On the Criteria To Be Used in Decomposition
Systems and Modules” Com. ACM Dec. 1972 Vol. 15 Nº 12 pp.
1053-1058.

WEB RESOURCES
Subject web site (http://)

Subject Moodle site (http://)

EQUIPMENT

Laboratory

Room 6202

Group work room 6202

	

	

	

	

	

	

	

	

	
11	

BRIEF DESCRIPTION OF THE ORGANIZATIONAL MODALITIES AND
TEACHING METHODS

THEORY CLASSES Theoretical models used in the subject are analyzed.

PROBLEM-SOLVING
CLASSES

…

PRACTICAL WORK …

INDIVIDUAL WORK Individual works come from group work.

GROUP WORK
Group work is the subject principal work way because
software engineer works in groups and because group work is
the main way of learning in this subject.

PERSONAL
TUTORING

Personal Tutoring could be wanted in order to improve the
learning process.

	

	

	

	

	

	

	
12	

8. Teaching resources
	

TEACHING	 RESOURCES	

RECOMMENDED
READING

Gamma Erich et al. “Design Patterns” Ed. Addison Wesley 1994

Larman Craig “Applying UML and Patterns” Second Edition.
Prentice Hall 2002.

Parnas David “On the Criteria To Be Used in Decomposition
Systems and Modules” Com. ACM Dec. 1972 Vol. 15 Nº 12 pp.
1053-1058.

WEB RESOURCES
Subject web site (http://)

Subject Moodle site (http://)

EQUIPMENT

Laboratory

Room 6202

Group work room 6202

	

	

	

	

	

	

	

	

	
13	

9. Subject schedule
	

Week Classroom activities Lab
activities

Individual work Group work Assessment
activities

Others

Week 1
(7 hours)

• Theory Class (Ch. 1)
• Set up the groups.
 (2 hours)

 • Individual work (2 hours) • Make up the software
system request.

 (3 hours)

Week 2
(7 hours)

• Request and Negotiation
about the System will be
developed.

 (2 hours)

 • Software Development
 (1 hour)

• Analysis of request and
synthesis of possible
solutions. Make an initial
decision. Delivery work.
(4 hours)

Week 3
(7 hours)

• Theory Class (Ch. 2)
 (2 hours)

 • Software Development
 (3 hours)

• Software Development
 (2 hours)

Week 4
(7 hours)

• Software development in
groups with client interaction.

• Public discussion about
design developed up to date.
(Ch. 2, 3, 5)

 (2 hours)

 • Software Development
 (3 hours)

• Software Development
 (2 hours)

	

	

	

	

	

	

	
14	

Week 5
(7 hours)

• Software development in
groups with client interaction.

• Public discussion about
design developed up to date.
(Ch. 2, 3, 5)

 (2 hours)

 • Software Development
 (3 hours)

• Software Development
 (2 hours)

Week 6
(8 hours)

• Software development in
groups with client interaction.

• Public discussion about
design developed up to date.
(Ch. 2, 3, 5)

 (2 hours)

 • Software Development
 (3 hours)

• Software Development
 (3 hours)

Week 7
(7 hours)

• Software development in
groups with client interaction.

• Public discussion about
design developed up to date.
(Ch. 2, 3, 5)

 (2 hours)

 • Preparing the First
Evaluation

 (2 hours)

• Preparing the First
Evaluation

 (3 hours)

Week 8
(7 hours)

• The assessment activity is in
classroom.

 • Preparing the First
Evaluation

 (2 hours)

• Preparing the First
Evaluation

 (3 hours)

• First Oral
Evaluation

 (2 hours)

Week 9
(7 hours)

• Public re-analysis of
discussed design.

 (2 hours)

 • Analysis of design.
 (1 hour)

• Analysis of design. As
client, make up the request
of changes to wanted
system.

 (4 hours).

	

	

	

	

	

	

	
15	

Week 10
(7 hours)

• Request and Negotiation
about the changes will be
done. .

 (2 hours)

 • Individual work.
 (1 hour)

• Analysis of changes
wanted and synthesis of
possible solutions. Make
a decision. Delivery work.

 (4 hours)

Week 11
(7 hours)

• Theory class (Ch. 4)
 (2 hours)

 • Software development.
 (3 hours)

• Software development.
 (2 hours)

Week 12
(7 hours)

• Software development in
groups with client interaction.

• Public discussion about
design developed up to date.
(Ch. 2, 3, 4, 5)

 (2 hours)

 • Software development.
 (3 hours)

• Software development.
 (2 hours)

Week 13
(7 hours)

• Software development in
groups with client interaction.

• Public discussion about
design developed up to date.
(Ch. 2, 3, 4, 5)

 (2 hours)

 • Software development.
 (3 hours)

• Software development.
 (2 hours)

Week 14
(7 hours)

• Software development in
groups with client interaction.

• Public discussion about
design developed up to date.
(Ch. 2, 3, 4, 5)

 (2 hours)

 • Software development.
 (3 hours)

• Software development.
 (2 hours)

	

	

	

	

	

	

	
16	

Week 15
(7 hours)

• Software development in
groups with client interaction.

• Public discussion about
design developed up to date.
(Ch. 2, 3, 4, 5)

 (2 hours)

 • Preparing the Final
Evaluation

 (2 hours)

• Preparing the Final
Evaluation

 (3 hours)

Week 16
(7 hours)

• The assessment activity is in
classroom.

 • Preparing the Final
Evaluation

 (2 hours)

• Preparing the Final
Evaluation

 (3 hours)

• Final Evaluation.
 (2 hours)

Note:	 Student	 workload	 specified	 for	 each	 activity	 in	 hours

